Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Preparation of Sensor for the Detection of Paraquat
2.3.1. Coating and In-Situ Electrochemical Reduction of Graphene Oxide (rGO) on Carbon Screen-Printed Electrode
2.3.2. Cross-Linker and Paraquat Antibody (PQ-Ab) Immobilization Step
3. Results and Discussion
3.1. Sensor Characterizations
3.2. Electrochemical Detection of Paraquat in Drinking Water Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thimoonnee, S.; Somnet, K.; Ngaosri, P.; Chairam, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Fast, Sensitive and Selective Simultaneous Determination of Paraquat and Glyphosate Herbicides in Water Samples Using a Compact Electrochemical Sensor. Anal. Methods 2022, 14, 820–833. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Z.; Qin, Y.; Li, Y.; Liu, X.; Li, Q.; Huang, H. Fabricated Electrochemical Sensory Platform Based on the Boron Nitride Ternary Nanocomposite Film Electrode for Paraquat Detection. ACS Omega 2019, 4, 18398–18404. [Google Scholar] [CrossRef]
- de Figueiredo-Filho, L.C.S.; Baccarin, M.; Janegitz, B.C.; Fatibello-Filho, O. A Disposable and Inexpensive Bismuth Film Minisensor for a Voltammetric Determination of Diquat and Paraquat Pesticides in Natural Water Samples. Sens. Actuators B Chem. 2017, 240, 749–756. [Google Scholar] [CrossRef]
- Valera, E.; García-Febrero, R.; Pividori, I.; Sánchez-Baeza, F.; Marco, M.P. Coulombimetric Immunosensor for Paraquat Based on Electrochemical Nanoprobes This Work Is Dedicated to the Memory of Dr. Francisco Sanchez-Baeza. Sens. Actuators B Chem. 2014, 194, 353–360. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Zhu, Y.; Jia, X.; Zhang, S.; Wang, H.; Li, Y.; Hu, G. Fe2O3-Decorated Boron/Nitrogen-Co-Doped Carbon Nanosheets as an Electrochemical Sensing Platform for Ultrasensitive Determination of Paraquat in Natural Water. Chin. Chem. Lett. 2023, 34, 2–7. [Google Scholar] [CrossRef]
- Rial-Otero, R.; Cancho-Grande, B.; Perez-Lamela, C.; Simal-Gándara, J.; Arias-Estévez, M. Simultaneous Determination of the Herbicides Diquat and Paraquat in Water. J. Chromatogr. Sci. 2006, 44, 539–542. [Google Scholar] [CrossRef]
- Hara, S.; Sasaki, N.; Takase, D.; Shiotsuka, S.; Ogata, K.; Futagami, K.; Tamura, K. Rapid and Sensitive HPLC Method for the Simultaneous Determination of Paraquat and Diquat in Human Serum. Anal. Sci. 2007, 23, 523–526. [Google Scholar] [CrossRef]
- Kamkrua, N.; Ngernsutivorakul, T.; Limwichean, S.; Eiamchai, P.; Chananonnawathorn, C.; Pattanasetthakul, V.; Ricco, R.; Choowongkomon, K.; Horprathum, M.; Nuntawong, N.; et al. Au Nanoparticle-Based Surface-Enhanced Raman Spectroscopy Aptasensors for Paraquat Herbicide Detection. ACS Appl. Nano Mater. 2023, 6, 1072–1082. [Google Scholar] [CrossRef]
- Wachholz Junior, D.; Deroco, P.B.; Kubota, L.T. A Copper-Based Metal-Organic Framework/Reduced Graphene Oxide-Modified Electrode for Electrochemical Detection of Paraquat. Microchim. Acta 2022, 189, 278. [Google Scholar] [CrossRef]
- Poudyal, D.C.; Dhamu, V.N.; Samson, M.; Muthukumar, S.; Prasad, S. Portable Pesticide Electrochem-Sensor: A Label-Free Detection of Glyphosate in Human Urine. Langmuir 2022, 38, 1781–1790. [Google Scholar] [CrossRef]
- Poudyal, D.C.; Satpati, A.K.; Kumar, S.; Haram, S.K. High Sensitive Determination of Dopamine through Catalytic Oxidation and Preconcentration over Gold-Multiwall Carbon Nanotubes Composite Modified Electrode. Mater. Sci. Eng. C 2019, 103, 109788. [Google Scholar] [CrossRef] [PubMed]
- Banga, I.; Paul, A.; Poudyal, D.C.; Muthukumar, S.; Prasad, S. Recent Advances in Gas Detection Methodologies with a Special Focus on Environmental Sensing and Health Monitoring Applications─A Critical Review. ACS Sens. 2023, 8, 3307–3319. [Google Scholar] [CrossRef] [PubMed]
- Dhamu, V.N.; Poudyal, D.; Samson, M.; Paul, A.; Muthukumar, S.; Prasad, S. Review—Environmental Biosensors for Agro-Safety Based on Electrochemical Sensing Mechanism with an Emphasis on Pesticide Screening. ECS Sens. Plus 2023, 2, 024601. [Google Scholar] [CrossRef]
- Traiwatcharanon, P.; Siriwatcharapiboon, W.; Jongprateep, O.; Wongchoosuk, C. Electrochemical Paraquat Sensor Based on Lead Oxide Nanoparticles. RSC Adv. 2022, 12, 16079–16092. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Q.; Yao, J.; Guo, X.; Ying, Y.; Liu, X.; Wen, Y.; Yang, H.; Wu, Y. Advanced Photoelectrochemical Detection of Paraquat Based on Plasmonic Metal Modified Photocathode Material. Appl. Surf. Sci. 2022, 581, 151903. [Google Scholar] [CrossRef]
- Sant’Anna, M.V.S.; Silva, J.d.O.S.; Gevaerd, A.; Lima, L.S.; Monteiro, M.D.S.; Carregosa, I.S.C.; Wisniewski, A.; Marcolino-Junior, L.H.; Bergamini, M.F.; Sussuchi, E.M. Selective Carbonaceous-Based (Nano)Composite Sensors for Electrochemical Determination of Paraquat in Food Samples. Food Chem. 2022, 373, 131521. [Google Scholar] [CrossRef]
- Zheng, W.; Su, R.; Yu, G.; Liu, L.; Yan, F. Highly Sensitive Electrochemical Detection of Paraquat in Environmental Water Samples Using a Vertically Ordered Mesoporous Silica Film and a Nanocarbon Composite. Nanomaterials 2022, 12, 3632. [Google Scholar] [CrossRef]
- Liang, G.; He, Z.; Zhen, J.; Tian, H.; Ai, L.; Pan, L.; Gong, W. Development of the Screen-Printed Electrodes: A Mini Review on the Application for Pesticide Detection. Environ. Technol. Innov. 2022, 28, 102922. [Google Scholar] [CrossRef]
- Pilas, J.; Selmer, T.; Keusgen, M.; Schöning, M.J. Screen-Printed Carbon Electrodes Modified with Graphene Oxide for the Design of a Reagent-Free NAD+-Dependent Biosensor Array. Anal. Chem. 2019, 91, 15293–15299. [Google Scholar] [CrossRef]
- Li, J.; Lei, W.; Xu, Y.; Zhang, Y.; Xia, M.; Wang, F. Fabrication of Polypyrrole-Grafted Nitrogen-Doped Graphene and Its Application for Electrochemical Detection of Paraquat. Electrochim. Acta 2015, 174, 464–471. [Google Scholar] [CrossRef]
- Hamilton, D.J.; Ambrus, Á.; Dieterle, R.M.; Felsot, A.S.; Harris, C.A.; Holland, P.T.; Katayama, A.; Kurihara, N.; Linders, J.; Unsworth, J.; et al. Regulatory Limits for Pesticide Residues in Water (IUPAC Technical Report). Pure Appl. Chem. 2003, 75, 1123–1155. [Google Scholar] [CrossRef]
- Dos Santos, L.B.O.; Infante, C.M.C.; Masini, J.C. Development of a Sequential Injection-Square Wave Voltammetry Method for Determination of Paraquat in Water Samples Employing the Hanging Mercury Drop Electrode. Anal. Bioanal. Chem. 2010, 396, 1897–1903. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Kuang, H.; Xu, C. Preparing Monoclonal Antibodies and Developing Immunochromatographic Strips for Paraquat Determination in Water. Food Chem. 2020, 311, 125897. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Febrero, R.; Salvador, J.P.; Sanchez-Baeza, F.; Marco, M.P. Rapid Method Based on Immunoassay for Determination of Paraquat Residues in Wheat, Barley and Potato. Food Control 2014, 41, 193–201. [Google Scholar] [CrossRef]
- Benvidi, A.; Tezerjani, M.D.; Jahanbani, S.; Mazloum Ardakani, M.; Moshtaghioun, S.M. Comparison of Impedimetric Detection of DNA Hybridization on the Various Biosensors Based on Modified Glassy Carbon Electrodes with PANHS and Nanomaterials of RGO and MWCNTs. Talanta 2016, 147, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef]
- Ibáñez-Redín, G.; Wilson, D.; Gonçalves, D.; Oliveira, O.N. Low-Cost Screen-Printed Electrodes Based on Electrochemically Reduced Graphene Oxide-Carbon Black Nanocomposites for Dopamine, Epinephrine and Paracetamol Detection. J. Colloid Interface Sci. 2018, 515, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, D.C.; Dhamu, V.N.; Samson, M.; Malik, S.; Kadambathil, C.S.; Muthukumar, S.; Prasad, S. How Safe Is Our Food We Eat? An Electrochemical Lab-on-Kitchen Approach towards Combinatorial Testing for Pesticides and GMOs; A Case Study with Edamame. Ecotoxicol. Environ. Saf. 2023, 252, 114635. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and Controllable Electrochemical Reduction of Graphene Oxide and Its Applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Zhou, A.; Bai, J.; Hong, W.; Bai, H. Electrochemically Reduced Graphene Oxide: Preparation, Composites, and Applications. Carbon 2022, 191, 301–332. [Google Scholar] [CrossRef]
- Quezada-Renteria, J.A.; Ania, C.O.; Chazaro-Ruiz, L.F.; Rangel-Mendez, J.R. Influence of Protons on Reduction Degree and Defect Formation in Electrochemically Reduced Graphene Oxide. Carbon 2019, 149, 722–732. [Google Scholar] [CrossRef]
- Pandey, S.K.; Sachan, S.; Singh, S.K. Electrochemically Reduced Graphene Oxide Modified with Electrodeposited Thionine and Horseradish Peroxidase for Hydrogen Peroxide Sensing and Inhibitive Measurement of Chromium. Mater. Sci. Energy Technol. 2019, 2, 676–686. [Google Scholar] [CrossRef]
- Deng, K.Q.; Zhou, J.h.; Li, X.F. Direct Electrochemical Reduction of Graphene Oxide and Its Application to Determination of L-Tryptophan and l-Tyrosine. Colloids Surf. B Biointerfaces 2013, 101, 183–188. [Google Scholar] [CrossRef]
- Pavlidis, I.V.; Patila, M.; Bornscheuer, U.T.; Gournis, D.; Stamatis, H. Graphene-Based Nanobiocatalytic Systems: Recent Advances and Future Prospects. Trends Biotechnol. 2014, 32, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Sethi, J.; Van Bulck, M.; Suhail, A.; Safarzadeh, M.; Perez-Castillo, A.; Pan, G. A Label-Free Biosensor Based on Graphene and Reduced Graphene Oxide Dual-Layer for Electrochemical Determination of Beta-Amyloid Biomarkers. Microchim. Acta 2020, 187, 288. [Google Scholar] [CrossRef]
- Iijima, M.; Somiya, M.; Yoshimoto, N.; Niimi, T.; Kuroda, S. Nano-Visualization of Oriented-Immobilized IgGs on Immunosensors by High-Speed Atomic Force Microscopy. Sci. Rep. 2012, 2, 790. [Google Scholar] [CrossRef]
- Gao, Z.; Ducos, P.; Ye, H.; Zauberman, J.; Sriram, A.; Yang, X.; Wang, Z.; Mitchell, M.W.; Lekkas, D.; Brisson, D.; et al. Graphene Transistor Arrays Functionalized with Genetically Engineered Antibody Fragments for Lyme Disease Diagnosis. 2D Mater. 2020, 7, 024001. [Google Scholar] [CrossRef]
- Coppari, E.; Santini, S.; Bizzarri, A.R.; Cannistraro, S. Kinetics and Binding Geometries of the Complex between Β2-Microglobulin and Its Antibody: An AFM and SPR Study. Biophys. Chem. 2016, 211, 19–27. [Google Scholar] [CrossRef]
- Daniels, J.S.; Pourmand, N. Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis 2007, 19, 1239–1257. [Google Scholar] [CrossRef]
- Kazemi, S.H.; Shanehsaz, M.; Ghaemmaghami, M. Non-Faradaic Electrochemical Impedance Spectroscopy as a Reliable and Facile Method: Determination of the Potassium Ion Concentration Using a Guanine Rich Aptasensor. Mater. Sci. Eng. C 2015, 52, 151–154. [Google Scholar] [CrossRef]
- Tkac, J.A.N.; Davis, J.J. Label-Free Field Effect Protein Sensing. In Engineering the Bioelectronic Interface: Applications to Analyte Biosensing and Protein Detection; Royal Society of Chemistry: Cambridge, UK, 2009; ISBN 9781847559777. [Google Scholar]
- Lisdat, F.; Schäfer, D. The Use of Electrochemical Impedance Spectroscopy for Biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef]
- Pimalai, D.; Putnin, T.; Bamrungsap, S. A Highly Sensitive Electrochemical Sensor Based on Poly(3-Aminobenzoic Acid)/Graphene Oxide-Gold Nanoparticles Modified Screen Printed Carbon Electrode for Paraquat Detection. J. Environ. Sci. 2025, 148, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Tang, C.; Zhan, X.; Zhou, M.; Zhang, L.; Chen, W.T.; Abdukayum, A.; Hu, G. ZIF-67 Based CoS2 Self-Assembled on Graphitic Carbon Nitride Microtubular for Sensitive Electrochemical Detection of Paraquat in Fruits. J. Hazard. Mater. 2024, 467, 133715. [Google Scholar] [CrossRef]
- Charoenkitamorn, K.; Chotsuwan, C.; Chaiyo, S.; Siangproh, W.; Chailapakul, O. A New Ready-to-Use Gel-Based Electrolyte for Paraquat Sensor. Sens. Actuators B Chem. 2020, 315, 128089. [Google Scholar] [CrossRef]
- Pacheco, M.R.; Barbosa, S.C.; Quadrado, R.F.N.; Fajardo, A.R.; Dias, D. Glassy Carbon Electrode Modified with Carbon Black and Cross-Linked Alginate Film: A New Voltammetric Electrode for Paraquat Determination. Anal. Bioanal. Chem. 2019, 411, 3269–3280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, Y.; Xu, L.; Zhou, Y.; Hong, Y.; Hou, D.; Liao, X. Facile Preparation of Ultra Stable Polymer-Based Sensor for Highly Sensitive and Selective Detection of Paraquat in Agricultural Products. Microchem. J. 2024, 199, 110097. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Carreira, C.A.; Lee, H.J.; Silva, F.; Martins, A.; Pereira, C.M. Voltammetric Determination of Paraquat at DNA-Gold Nanoparticle Composite Electrodes. Electrochim. Acta 2010, 55, 7892–7896. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudyal, D.C.; Samson, M.; Dhamu, V.N.; Mohammed, S.; Tanchez, C.N.; Puri, A.; Baby, D.; Muthukumar, S.; Prasad, S. Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water. Electrochem 2024, 5, 341-353. https://doi.org/10.3390/electrochem5030022
Poudyal DC, Samson M, Dhamu VN, Mohammed S, Tanchez CN, Puri A, Baby D, Muthukumar S, Prasad S. Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water. Electrochem. 2024; 5(3):341-353. https://doi.org/10.3390/electrochem5030022
Chicago/Turabian StylePoudyal, Durgasha C., Manish Samson, Vikram Narayanan Dhamu, Sera Mohammed, Claudia N. Tanchez, Advaita Puri, Diya Baby, Sriram Muthukumar, and Shalini Prasad. 2024. "Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water" Electrochem 5, no. 3: 341-353. https://doi.org/10.3390/electrochem5030022
APA StylePoudyal, D. C., Samson, M., Dhamu, V. N., Mohammed, S., Tanchez, C. N., Puri, A., Baby, D., Muthukumar, S., & Prasad, S. (2024). Low-Volume Electrochemical Sensor Platform for Direct Detection of Paraquat in Drinking Water. Electrochem, 5(3), 341-353. https://doi.org/10.3390/electrochem5030022