Next Issue
Volume 4, September
Previous Issue
Volume 4, March
 
 

Appl. Nano, Volume 4, Issue 2 (June 2023) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 7011 KiB  
Article
Electrochemical Synthesis and Application of Ge-Sn-O Nanostructures as Anodes of Lithium-Ion Batteries
by Ilya M. Gavrilin, Yulia O. Kudryashova, Maksim M. Murtazin, Ilia I. Tsiniaikin, Alexander V. Pavlikov, Tatiana L. Kulova and Alexander M. Skundin
Appl. Nano 2023, 4(2), 178-190; https://doi.org/10.3390/applnano4020010 - 7 Jun 2023
Viewed by 1856
Abstract
This work demonstrates the possibility of electrochemical formation of Ge-Sn-O nanostructures from aqueous solutions containing germanium dioxide and tin (II) chloride at room temperature without prior deposition of fusible metal particles. This method does not require complex technological equipment, expensive and toxic germanium [...] Read more.
This work demonstrates the possibility of electrochemical formation of Ge-Sn-O nanostructures from aqueous solutions containing germanium dioxide and tin (II) chloride at room temperature without prior deposition of fusible metal particles. This method does not require complex technological equipment, expensive and toxic germanium precursors, or binding additives. These advantages will make it possible to obtain such structures on an industrial scale (e.g., using roll-to-roll technology). The structural properties and composition of Ge-Sn-O nanostructures were studied by means of scanning electron microscopy and X-ray photoelectron spectroscopy. The samples obtained represent a filamentary structure with a diameter of about 10 nm. Electrochemical studies of Ge-Sn-O nanostructures were studied by cyclic voltammetry and galvanostatic cycling. Studies of the processes of lithium-ion insertion/extraction showed that the obtained structures have a practical discharge capacity at the first cycle ~625 mAh/g (specific capacity ca. 625 mAh/g). However, the discharge capacity by cycle 30 was no more than 40% of the initial capacity. The obtained results would benefit the further design of Ge-Sn-O nanostructures formed by simple electrochemical deposition. Full article
Show Figures

Figure 1

19 pages, 3328 KiB  
Article
Production and Properties of Quercetin-Loaded Liposomes and Their Influence on the Properties of Galactomannan-Based Films
by Priscilla Barbosa Sales de Albuquerque, Marthyna Pessoa de Souza, Ana Isabel Bourbon, Miguel A. Cerqueira, Lorenzo Pastrana, Paula Jauregi, José A. Teixeira and Maria das Graças Carneiro-da-Cunha
Appl. Nano 2023, 4(2), 159-177; https://doi.org/10.3390/applnano4020009 - 31 May 2023
Cited by 1 | Viewed by 2460
Abstract
The objective of this work was to prepare different concentrations of liposomes based on lecithin containing quercetin, and evaluate their effect on the properties of galactomannan films obtained from Cassia grandis seeds. Quercetin-loaded lecithin liposomes (QT-LL) were obtained by the ethanol injection method [...] Read more.
The objective of this work was to prepare different concentrations of liposomes based on lecithin containing quercetin, and evaluate their effect on the properties of galactomannan films obtained from Cassia grandis seeds. Quercetin-loaded lecithin liposomes (QT-LL) were obtained by the ethanol injection method by incorporating quercetin in different concentrations in a previously prepared suspension of lecithin liposomes in water. Following characterization of QT-LLs by zeta potential and dynamic light scattering, QT-LL with 75 µg quercetin/mL suspension was incorporated at different concentrations in galactomannan films. The films obtained were characterized for color, solubility, moisture content (MC), water vapor permeability (WVP), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The size of lecithin liposomes with no quercetin was statistically than those containing quercetin above 50 µg/mL. All the QT-LLs presented a low polydispersity index, even considering their significant differences and similar values for zeta potential. The films displayed a rough surface and the galactomannan structure was confirmed by FTIR. Additionally, the amorphous nature of the polysaccharide was observed by XRD. The films were luminous, with a predominant yellow tendency and low opacity. The incorporation of QT-LL in galactomannan films did not lead to statistical differences for solubility and MC, while significant differences were observed for WVP. Galactomannan films were shown to be a promising structure for the incorporation of lecithin liposomes loaded with quercetin, pointing at promising applications for different applications. Full article
(This article belongs to the Topic Preparation and Application of Polymer Nanocomposites)
Show Figures

Figure 1

21 pages, 7343 KiB  
Review
Corrosion-Resisting Nanocarbon Nanocomposites for Aerospace Application: An Up-to-Date Account
by Ayesha Kausar, Ishaq Ahmad and Tingkai Zhao
Appl. Nano 2023, 4(2), 138-158; https://doi.org/10.3390/applnano4020008 - 12 May 2023
Cited by 4 | Viewed by 2839
Abstract
The design and necessity of corrosion-resisting nanocarbon nanocomposites have been investigated for cutting-edge aerospace applications. In this regard, nanocarbon nanofillers, especially carbon nanotubes, graphene, nanodiamond, etc. have been used to fill in various polymeric matrices (thermosets, thermoplastics, and conducting polymers) to develop anti-rusting [...] Read more.
The design and necessity of corrosion-resisting nanocarbon nanocomposites have been investigated for cutting-edge aerospace applications. In this regard, nanocarbon nanofillers, especially carbon nanotubes, graphene, nanodiamond, etc. have been used to fill in various polymeric matrices (thermosets, thermoplastics, and conducting polymers) to develop anti-rusting space-related nanocomposites. This review fundamentally emphases the design, anti-corrosion properties, and application of polymer/nanocarbon nanocomposites for the space sector. An electron-conducting network is created in the polymers with nanocarbon dispersion to assist in charge transportation, and thus in the polymers’ corrosion resistance features. The corrosion resistance mechanism depends upon the formation of tortuous diffusion pathways due to nanofiller arrangement in the matrices. Moreover, matrix–nanofiller interactions and interface formation play an important role in enhancing the corrosion protection properties. The anticorrosion nanocomposites were tested for their adhesion, contact angle, and impedance properties, and NaCl tests and scratch tests were carried out. Among the polymers, epoxy was found to be superior corrosion-resisting polymer, relative to the thermoplastic polymers in these nanocomposites. Among the carbon nanotubes, graphene, and nanodiamond, the carbon nanotube with a loading of up to 7 wt.% in the epoxy matrix was desirable for corrosion resistance. On the other hand, graphene contents of up to 1 wt.% and nanodiamond contents of 0.2–0.4 wt.% were desirable to enhance the corrosion resistance of the epoxy matrix. The impedance, anticorrosion, and adhesion properties of epoxy nanocomposites were found to be better than those of the thermoplastic materials. Despite the success of nanocarbon nanocomposites in aerospace applications, thorough research efforts are still needed to design high-performance anti-rusting materials to completely replace the use of metal components in the aerospace industry. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Graphical abstract

23 pages, 6562 KiB  
Article
Growth of New, Optically Active, Semi-Organic Single Crystals Glycine-Copper Sulphate Doped by Silver Nanoparticles
by Rasmiah Saad A. Almufarij, Alaa El-Deen Ali, Mohamed Elsayed Elba, Howida Eid Okab, Ollaa Moftah Mailoud, Hamida Abdel-Hamid and Howida Abouel Fetouh Elsayed
Appl. Nano 2023, 4(2), 115-137; https://doi.org/10.3390/applnano4020007 - 18 Apr 2023
Viewed by 2425
Abstract
The purpose of this study is to modify all physicochemical properties of glycine–copper sulphate single crystals, such as crystal habits, molar mass, thermal stability, optical activity, and electrical properties. The novelty of this study is growth of glycine–copper sulphate single crystals doped by [...] Read more.
The purpose of this study is to modify all physicochemical properties of glycine–copper sulphate single crystals, such as crystal habits, molar mass, thermal stability, optical activity, and electrical properties. The novelty of this study is growth of glycine–copper sulphate single crystals doped by a low concentration of silver nanoparticles (SNPs) that improved both crystal habits and physicochemical properties. The originality of this work is that trace amounts of SNPs largely increased the crystal size. Crystals have molar stoichiometric formula [glycine]0.95, [CuSO4·5H2O]0.05 in the absence and presence of silver nanoparticles (SNPs) in different concentrations: 10 ppm, 20 ppm, and 30 ppm. The crystals’ names and abbreviations are: glycine–copper sulphate (GCS), glycine–copper sulphate doped by 10 ppm SNPs (GCSN1), glycine–copper sulphate doped by 20 ppm SNPs (GCSN2), and glycine–copper sulphate doped by 30 ppm SNPs (GCSN3). Dopant silver nanoparticles increased: crystallinity reflecting purity, transparency to UV-Vis. electromagnetic radiation, thermal stability, and melting point of glycine–copper sulphate single crystal. GCSN3 is a super conductor. High thermal conductivity of crystals ranging from 1.1 W·min−1·K−1 to 1.6 W·min−1·K−1 enabled attenuation of electromagnetic radiation and rapid heat dissipation due to good dielectric and polar properties. On rising temperature, AC electrical conductivity and dielectric properties of perfect crystal GCSN3 increased confirmed attenuation of thermal infrared radiation. Full article
(This article belongs to the Topic Electronic and Optical Properties of Nanostructures)
Show Figures

Figure 1

40 pages, 7097 KiB  
Review
Potential Applications of Core-Shell Nanoparticles in Construction Industry Revisited
by Ghasan Fahim Huseien
Appl. Nano 2023, 4(2), 75-114; https://doi.org/10.3390/applnano4020006 - 7 Apr 2023
Cited by 4 | Viewed by 4511
Abstract
The demand of high performance and environmentally sustainable construction materials is ever-increasing in the construction industry worldwide. The rapid growth of nanotechnology and diverse nanomaterials’ accessibility has provided an impulse for the uses of smart construction components like nano-alumina, nano-silica, nano-kaolin, nano-titanium, and [...] Read more.
The demand of high performance and environmentally sustainable construction materials is ever-increasing in the construction industry worldwide. The rapid growth of nanotechnology and diverse nanomaterials’ accessibility has provided an impulse for the uses of smart construction components like nano-alumina, nano-silica, nano-kaolin, nano-titanium, and so forth Amongst various nanostructures, the core-shell nanoparticles (NPs) have received much interests for wide applications in the field of phase change materials, energy storage, high performance pigments, coating agents, self-cleaning and self-healing systems, etc., due to their distinct properties. Through the fine-tuning of the shells and cores of NPS, various types of functional materials with tailored properties can be achieved, indicating their great potential for the construction applications. In this perception, this paper overviewed the past, present and future of core-shell NPs-based materials that are viable for the construction sectors. In addition, several other applications of the core-shell NPs in the construction industries are emphasized and discussed. Considerable benefits of the core-shell NPs for pigments, phase change components, polymer composites, and self-cleaning glasses with enhanced properties are also underlined. Effect of high performance core-shell NPs type, size and content on the construction materials sustainability are highlighted. Full article
(This article belongs to the Special Issue Core-Shell Nanostructures for Functional Applications)
Show Figures

Figure 1

14 pages, 3080 KiB  
Article
The Effects of Surfactant and Metal Ions on the Stability and Rheological Properties of Nanoemulsions Loaded with Gardenia Yellow Pigment
by Li Gao and Bin Li
Appl. Nano 2023, 4(2), 61-74; https://doi.org/10.3390/applnano4020005 - 4 Apr 2023
Cited by 3 | Viewed by 2122
Abstract
The present work reports the preparation of gardenia yellow pigment containing paraffin oil nanoemulsions stabilized by Span80 and Tween80. The preparation of the required nanoemulsions was optimized by testing different conditions, such as varying the hydrophilic–lipophilic balance (HLB), the emulsifier concentration [...] Read more.
The present work reports the preparation of gardenia yellow pigment containing paraffin oil nanoemulsions stabilized by Span80 and Tween80. The preparation of the required nanoemulsions was optimized by testing different conditions, such as varying the hydrophilic–lipophilic balance (HLB), the emulsifier concentration (EC), the oil–water ratio (OWR), and the temperature (T), as determined by the average droplet diameter (ADD) and polydispersity index (PDI). Our results indicated that a minimum ADD of 65.9 nm and PDI of 0.116 were obtained at an optimum HLB value of 6.0, EC of 10% (w/w), OWR of 2:1, and T of 40 °C. Both the steady-state and dynamic rheological parameters were further investigated, revealing that the emulsions exhibited pseudoplastic behaviors. The long-term stabilities of the nanoemulsions after the addition of inorganic salts were monitored by observing their visual appearances. It was found that the emulsions containing pure water or 0.1 M CaCl2 and AlCl3 became slightly separated, while the emulsions containing 0.1 M KCl and NaCl showed no separation after 30 days of storage at room T. This difference among different salts could be related to the number of valence electrons of their cations. The spatial electrostatic effects of the monovalent cationic (KCl and NaCl) and the nonionic surfactants were greater than the delamination/sedimentation forces of the system, which was better than the salt based on the cations with valences greater than one (CaCl2 and AlCl3). In conclusion, the present work illustrated the formation, rheological properties, and stability of water containing gardenia yellow pigment in paraffin oil nanoemulsions, which can be of great significance for the application of gardenia-yellow-pigment-based formulations. Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop