Creep Phenomena, Mechanisms, and Modeling of Complex Engineering Alloys
Abstract
:1. Introduction
- creep strain to a specified level, e.g., 1%.
- creep life for intended hours of service, e.g., 100,000 h.
- What is the creep deformation behavior, i.e., creep strain/rate as a function of time, stress, and temperature, to the point of rupture?
- How does the creep life vary with stress and temperature?
- What are the effects of chemical composition and microstructure (via manufacturing process and heat treatment, etc.) on the material’s creep resistance?
- How does the material microstructure change during long-time service at high temperatures and, if changed, what is its effect on the material’s creep performance?
- Does the operating environment have an effect on the material’s creep performance?
2. Creep Phenomena
2.1. Creep Deformation
2.2. Creep Life
2.3. Creep Ductility and Fracture Mode
3. Creep Mechanisms
4. Creep Modeling
4.1. Deformation-Mechanism-Based True-Stress Model
4.2. Effects of Composition and Microstructure
4.3. Environmental Effects
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrade, E.N.D. On the viscous flow in metals and allied phenomena. Proc. Roy. Soc. A 1910, 84, 1–12. [Google Scholar]
- Andrade, E.N.D. The flow in metals under large stresses. Proc. Roy. Soc. A 1914, 90, 329–342. [Google Scholar]
- French, D.N. Creep and Creep Failures. In National Board Bulletin; The National Board of Boiler and Pressure Vessel Inspectors: Columbus, OH, USA, 1991. [Google Scholar]
- Koizumi, Y.; Kobayashi, T.; Yokokawa, T.; Zhang, J.X.; Osawa, M.; Harada, H.; Aoki, Y.; Arai, M. Development of next-generation Ni-base single crystal superalloys. In Superalloys 2004; Green, K.A., Pollock, T.M., Harada, H., Eds.; TMS (The Minerals, Metals & Materials Society): Pittsburgh, PA, USA, 2004. [Google Scholar] [CrossRef]
- Wu, X.J. Deformation and Evolution of Life in Crystalline Materials; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Norton, F.H. The Creep of Steel at High Temperatures; McGraw-Hill: London, UK, 1929. [Google Scholar]
- Bailey, R.W. The utilization if creep test data in engineering design. Proc. Inst. Mech. Eng. 1935, 131, 209–284. [Google Scholar] [CrossRef]
- Graham, A.; Walles, K. Relationships between long and short time creep and tensile properties of a commercial alloy. J. Iron Steel Inst. 1955, 179, 104–121. [Google Scholar]
- Evans, R.W.; Wilshire, B. Creep of Metals and Alloys; The Institute of Metals: London, UK, 1985. [Google Scholar]
- Larson, F.R.; Miller, J. Time-temperature relationships for rupture and creep stresses. Trans. ASME 1952, 74, 765–771. [Google Scholar] [CrossRef]
- Orr, R.L.; Sherby, O.D.; Dorn, J.E. Correlations of rupture data for metals at elevated temperature. Trans. ASM 1954, 46, 113–128. [Google Scholar]
- Monkman, F.C.; Grant, N.J. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc. ASTM 1956, 56, 593–620. [Google Scholar]
- Wilshire, B.; Scharning, P.J. A new methodology for analysis of creep and creep fracture data for 9%–12% chromium steels. Int. Mater. Rev. 2008, 53, 91–104. [Google Scholar] [CrossRef]
- Wilshire, B.; Scharning, P.J. Prediction of long-term creep data for forged 1Cr-1Mo-0.25V steel. Mater. Sci. Technol. 2008, 24, 1–9. [Google Scholar] [CrossRef]
- Wilshire, B.; Scharning, P.J. Theoretical and practical approaches to creep of Waspaloy. Mat. Sci. Technol. 2009, 25, 243–248. [Google Scholar] [CrossRef]
- Abdallah, Z.; Gray, V.; Whittaker, M.; Perkins, K. A critical analysis of the conventionally employed creep lifing methods. Materials 2014, 7, 3371–3398. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.; Garwood, S. Energy Materials-Strategic Research Agenda; Q2. Materials Energy 414 Review; IoM3: London, UK, 2007. [Google Scholar]
- ISO 204; Metallic Materials—Uniaxial Creep Testing in Tension—Method of Test. International Organization for Standardization: Geneva, Switzerland, 2018.
- Spindler, M.W. The multiaxial and uniaxial creep rupture ductility of Type 304 steel as a function of stress and strain rate. Mater. High Temp. 2004, 21, 47–52. [Google Scholar] [CrossRef]
- Holdsworth, S. Creep-ductility of high temperature steels: A review. Metals 2019, 9, 342. [Google Scholar] [CrossRef]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and kinetics of slip. Prog. Mater. Sci. 1975, 19, 1–271. [Google Scholar]
- Mukherjee, A.K.; Bird, J.E.; Dorn, J.E. Experimental correlations for high-temperature creep. Trans. ASM 1969, 62, 155. [Google Scholar]
- Frost, H.; Ashby, M. Deformation Mechanism Maps; Pergamon Press: Elmsford, NY, USA, 1982. [Google Scholar]
- Weertman, J. Theory of steady-state creep based on dislocation climb. J. Appl. Phys. 1955, 26, 1213–1217. [Google Scholar] [CrossRef]
- Sandström, R. Basic Modelling and Theory of Creep of Metallic Materials; Springer: Cham, Switcherland, 2024. [Google Scholar] [CrossRef]
- Galindo-Nava, E.I.; Schlütter, R.; Messé, O.M.D.M.; Argyrakis, C.; Rae, C.M.F. A model for dislocation creep in polycrystalline Ni-base superalloys at intermediate temperatures. Int. J. Plast. 2023, 169, 103729. [Google Scholar] [CrossRef]
- Langdon, T.G. Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 1970, 22, 689–700. [Google Scholar] [CrossRef]
- Dyson, B.F.; McLean, M. Particle-coarsening, σ0 and tertiary creep. Acta Metall. 1983, 31, 17–27. [Google Scholar] [CrossRef]
- Furrillo, F.T.; Davidson, J.M.; Tien, J.K.; Jackman, L.A. The effects of grain boundary carbides on the creep and back stress of a nickel-base superalloy. Mater. Sci. Eng. 1979, 39, 267–273. [Google Scholar] [CrossRef]
- Wu, X.J.; Koul, A.K. Grain boundary sliding in the presence of grain boundary precipitates during transient creep. Metall. Mater. Trans. A 1995, 26, 905–914. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Miura, S.; Hashimoto, S.; Fuji, T. Effect of the triple junction on grain boundary sliding in aluminum tricrystals. J. Phys. Colloq. 1988, 49, 599–604. [Google Scholar] [CrossRef]
- Wadsworth, J.; Ruano, O.A.; Sherby, O.D. Denuded zones, diffusional creep, and grain boundary sliding. Metall. Mater. Trans. A 2002, 33, 219–229. [Google Scholar] [CrossRef]
- Wilshire, B. Observations, theories, and predictions of high-temperature creep behavior. Metall. Mater. Trans. A 2002, 33, 241–248. [Google Scholar] [CrossRef]
- Ardell, A.J.; Huang, J.C. Antiphase boundary energies an transition from shearing to looping in alloys strengthened by ordered precipitates. Phil. Mag. Lett. 1988, 58, 189–197. [Google Scholar] [CrossRef]
- Perry, A.J. Cavitation in creep. J. Mater. Sci. 1974, 9, 1016–1039. [Google Scholar] [CrossRef]
- Hull, D.; Rimmer, D.E. The growth of grain-boundary voids under stress. Phil. Mag. A 1959, 4, 673–687. [Google Scholar] [CrossRef]
- Dyson, B.F. Constrained cavity growth, its use in quantifying recent creep fracture results. Can. Metall. Q. 1979, 18, 31–38. [Google Scholar] [CrossRef]
- Needleman, A.; Rice, J.R. Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Met. 1980, 28, 1315–1332. [Google Scholar] [CrossRef]
- Weaver, C.W. Intergranular cavitation, structure, and creep of Nimonic 89A-type alloy. J Inst. Met. 1960, 88, 296–300. [Google Scholar]
- Raj, R.; Ashby, M.F. On grain boundary sliding and diffusional creep. Metall. Trans. A 1971, 2, 1113–1125. [Google Scholar] [CrossRef]
- Raj, R.; Ashby, M.F. Intergranular fracture at elevated temperature. Acta Metall. 1975, 23, 653–666. [Google Scholar] [CrossRef]
- Kassner, M.E.; Hayes, T.A. Creep cavitation in metals. Int. J. Plast. 2003, 19, 1715–1748. [Google Scholar] [CrossRef]
- Wu, X.J. A continuously distributed dislocation model of Zener-Stroh-Koehler cracks in anisotropic materials. Int. J. Solids Struct. 2005, 42, 1909–1921. [Google Scholar] [CrossRef]
- Wu, X.J.; Williams, S.; Gong, D. A true-stress creep model based on deformation mechanisms for polycrystalline materials. J. Mater. Eng. Perform. 2012, 21, 2255–2262. [Google Scholar] [CrossRef]
- Wu, X.J. An integrated creep-fatigue theory for material damage modeling. Key Eng. Mater. 2015, 627, 341–344. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wu, X.J.; Liu, R.; Liu, J.; Yao, M.X. Deformation-mechanism-based modeling of creep behavior of modified 9Cr-1Mo steel. Mater. Sci. Eng. A 2017, 689, 345–352. [Google Scholar] [CrossRef]
- Xiao, B.; Xu, L.Y.; Zhao, L.; Jing, H.Y.; Han, Y.D. Deformation-mechanism-based creep model and damage mechanism of G115 steel over a wide stress range. Mater. Sci. Eng. A 2019, 743, 280–293. [Google Scholar] [CrossRef]
- Lu, C.Y.; Wu, X.J.; He, Y.M.; Gao, Z.L.; Liu, R.; Chen, Z.; Zheng, W.J.; Yang, J.G. Deformation mechanism-based true-stress creep model for SA508Gr3 steel over the temperature range of 450–750 °C. J. Nucl. Mater. 2019, 526, 151776. [Google Scholar] [CrossRef]
- Wu, X.J. Comment on theoretical and experimental study of creep damage on alloy 800 at high temperature (MSA 140953). Mater. Sci. Eng. A 2021, 820, 141543. [Google Scholar] [CrossRef]
- Ding, Y.P.; Wu, X.J.; Liu, R.; Zhang, X.Z.; Khelfaoui, F. Creep performance characterization for Haynes 282TM using the deformation-mechanism-based true stress model. Thermal Sci. Eng. Prog. 2022, 37, 101603. [Google Scholar] [CrossRef]
- He, J.; Sandström, R. Creep rupture prediction using constrained neural networks with error estimates. Mater. High Temp. 2022, 39, 239–251. [Google Scholar] [CrossRef]
- Zare, A.; Hosseini, R.K. A breakthrough in creep lifetime prediction: Leveraging machine learning and service data. Scr. Mater. 2024, 245, 116037. [Google Scholar] [CrossRef]
- Pint, B.A.; Wang, H.; Hawkins, C.S.; Unocic, K.A. Technical Qualification of New Materials for High Efficiency Coal-Fired Boilers and Other Advanced FE Concepts: Haynes® 282® ASME Boiler and Pressure Vessel Code Case; Technical Report ORNL/TM-2020/1548; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2020; pp. 1–21. [Google Scholar]
- Wu, X.J.; Koul, A.K. Grain boundary sliding at serrated grain boundary precipitates. Adv. Perform. Mater. 1997, 4, 409–420. [Google Scholar] [CrossRef]
- Singh, C.V.; Mateos, A.J.; Warner, D.H. Atomistic simulations of dislocation-precipitate interactions emphasizing importance of cross-slip. Scripta Mater. 2011, 64, 398–401. [Google Scholar] [CrossRef]
- Song, K.; Wang, K.; Zhao, L.; Xu, L.; Ma, N.; Han, Y.; Hao, K.; Zhang, L.; Gao, Y. A physically-based constitutive model for a novel heat resistant martensitic steel under different cyclic loading modes: Microstructural strengthening mechanisms. Int. J. Plast. 2023, 165, 103611. [Google Scholar] [CrossRef]
- Qi, Y.; Krajewski, P.E. Molecular dynamics simulations of grain boundary sliding: The effect of stress and boundary misorientation. Acta Mater. 2007, 55, 1555–1563. [Google Scholar] [CrossRef]
- Huang, L.; Sauzay, M.; Cui, Y.; Bonnaile, P. Theoretical and Experimental Study of Creep Damage on Alloy 800 at High Temperature. Mater. Sci. Eng. A 2021, 813, 140953. [Google Scholar]
- Zhang, X.Z.; Wu, X.J.; Liu, R.; Liu, J.; Yao, M.X. Influence of Laves phase on creep strength of modified 9Cr-1Mo steel. Mater. Sci. Eng. A 2017, 706, 279–286. [Google Scholar] [CrossRef]
- Wu, X.J.; Liu, R.; Zhang, X.Z.; Wu, X.; Khelfaoui, F. Creep performance study of Inconel 740H weldment based on microstructural deformation mechanisms. J. Eng. Mater. Technol. 2024, 146, 041001. [Google Scholar] [CrossRef]
- American Society of Mechanical Engineers (ASME). Case 2702 Seamless Ni 25Cr 20Co Material Section 1, Cases of the ASME Boiler and Pressure Vessel Code; BVP Supp. 7; ASME: New York City, NY, USA, 2011. [Google Scholar]
- Special Metals Corporation. INCONEL® ALLOY 740H® A Superalloy Specifically Designed for Advanced Ultra Supercritical Power Generation; Special Metals Corporation Technical Bulletin; Special Metals Corporation: New Hartford, NY, USA, 2023. [Google Scholar]
- Bueno, L.O. Effect of oxidation on creep data: Part 1—Comparison between some constant load creep results in air and vacuum on 2.25Cr-1Mo steel from 600 to 700 °C. Mater. High Temp. 2008, 25, 213–221. [Google Scholar] [CrossRef]
- Dyson, B.F.; Osgerby, S. Modelling creep-corrosion interactions in nickel-base superalloys. Mater. Sci. Technol. 1987, 3, 545–553. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhang, X.Z.; Liu, R.; Yao, M.X. Creep performance modeling of modified 9Cr 1Mo steels with oxidation. Metall. Mater. Trans. A 2020, 51, 1134–1147. [Google Scholar] [CrossRef]
- Shrestha, T.; Basirat, M.; Charit, I.; Potirniche, G.P.; Rink, K.K. Creep rupture behavior of Grade 91 steel. Mater. Sci. Eng. A 2013, 565, 382–391. [Google Scholar] [CrossRef]
Alloy | IDG | GBS |
---|---|---|
HB647 | = 5.25 × 10−54 σ19 | = 1.1 × 10−25 σ7.4 |
HN823 | = 3.49 × 10−54 σ19 | = 1.8 × 10−27 σ7.4 |
75193 | = 2.82 × 10−53 σ19 | = 1.8 × 10−27 σ7.4 |
HH3283 | = 8.8 × 10−74 σ26.2 | = 1.8 × 10−27 σ7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Liu, R.; Khelfaoui, F. Creep Phenomena, Mechanisms, and Modeling of Complex Engineering Alloys. Modelling 2024, 5, 819-840. https://doi.org/10.3390/modelling5030043
Wu X, Liu R, Khelfaoui F. Creep Phenomena, Mechanisms, and Modeling of Complex Engineering Alloys. Modelling. 2024; 5(3):819-840. https://doi.org/10.3390/modelling5030043
Chicago/Turabian StyleWu, Xijia, Rong Liu, and Fadila Khelfaoui. 2024. "Creep Phenomena, Mechanisms, and Modeling of Complex Engineering Alloys" Modelling 5, no. 3: 819-840. https://doi.org/10.3390/modelling5030043