Previous Issue
Volume 5, June
 
 

Telecom, Volume 5, Issue 3 (September 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 5137 KiB  
Article
Secure-by-Design Real-Time Internet of Medical Things Architecture: e-Health Population Monitoring (RTPM)
by Jims Marchang, Jade McDonald, Solan Keishing, Kavyan Zoughalian, Raymond Mawanda, Corentin Delhon-Bugard, Nicolas Bouillet and Ben Sanders
Telecom 2024, 5(3), 609-631; https://doi.org/10.3390/telecom5030031 - 10 Jul 2024
Viewed by 416
Abstract
The healthcare sector has undergone a profound transformation, owing to the influential role played by Internet of Medical Things (IoMT) technology. However, there are substantial concerns over these devices’ security and privacy-preserving mechanisms. The current literature on IoMT tends to focus on specific [...] Read more.
The healthcare sector has undergone a profound transformation, owing to the influential role played by Internet of Medical Things (IoMT) technology. However, there are substantial concerns over these devices’ security and privacy-preserving mechanisms. The current literature on IoMT tends to focus on specific security features, rather than wholistic security concerning Confidentiality, Integrity, and Availability (CIA Triad), and the solutions are generally simulated and not tested in a real-world network. The proposed innovative solution is known as Secure-by-Design Real-Time IoMT Architecture for e-Health Population Monitoring (RTPM) and it can manage keys at both ends (IoMT device and IoMT server) to maintain high privacy standards and trust during the monitoring process and enable the IoMT devices to run safely and independently even if the server is compromised. However, the session keys are controlled by the trusted IoMT server to lighten the IoMT devices’ overheads, and the session keys are securely exchanged between the client system and the monitoring server. The proposed RTPM focuses on addressing the major security requirements for an IoMT system, i.e., the CIA Triad, and conducts device authentication, protects from Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks, and prevents non-repudiation attacks in real time. A self-healing solution during the network failure of live e-health monitoring is also incorporated in RTPM. The robustness and stress of the system are tested with different data types and by capturing live network traffic. The system’s performance is analysed using different security algorithms with different key sizes of RSA (1024 to 8192 bits), AES (128 to 256 bits), and SHA (256 bits) to support a resource-constraint-powered system when integrating with resource-demanding secure parameters and features. In the future, other security features like intrusion detection and prevention and the user’s experience and trust level of such a system will be tested. Full article
Show Figures

Figure 1

21 pages, 4258 KiB  
Article
5G Network Deployment Planning Using Metaheuristic Approaches
by Binod Sapkota, Rijan Ghimire, Paras Pujara, Shashank Ghimire, Ujjwal Shrestha, Roshani Ghimire, Babu R. Dawadi and Shashidhar R. Joshi
Telecom 2024, 5(3), 588-608; https://doi.org/10.3390/telecom5030030 - 9 Jul 2024
Viewed by 938
Abstract
The present research focuses on optimizing 5G base station deployment and visualization, addressing the escalating demands for high data rates and low latency. The study compares the effectiveness of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Grey Wolf Optimizer [...] Read more.
The present research focuses on optimizing 5G base station deployment and visualization, addressing the escalating demands for high data rates and low latency. The study compares the effectiveness of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Grey Wolf Optimizer (GWO) in both Urban Macro (UMa) and Remote Macro (RMa) deployment scenarios that overcome the limitations of the current method of 5G deployment, which involves adopting Non-Standalone (NSA) architecture. Emphasizing population density, the optimization process eliminates redundant base stations for enhanced efficiency. Results indicate that PSO and GA strike the optimal balance between coverage and capacity, offering valuable insights for efficient network planning. The study includes a comparison of 28 GHz and 3.6 GHz carrier frequencies for UMa, highlighting their respective efficiencies. Additionally, the research proposes a 2.6 GHz carrier frequency for Remote Macro Antenna (RMa) deployment, enhancing 5G Multi-Tier Radio Access Network (RAN) planning and providing practical solutions for achieving infrastructure reduction and improved network performance in a specific geographical context. Full article
Show Figures

Figure 1

32 pages, 31472 KiB  
Article
Studying the Impact of Different TCP DoS Attacks on the Parameters of VoIP Streams
by Ivan Nedyalkov
Telecom 2024, 5(3), 556-587; https://doi.org/10.3390/telecom5030029 - 8 Jul 2024
Viewed by 235
Abstract
In today’s digital world, no one and nothing is safe from potential cyberattacks. There is also no 100% protection from such attacks. Therefore, it is advisable to carry out various studies related to the effects of the different cyberattacks on the performance of [...] Read more.
In today’s digital world, no one and nothing is safe from potential cyberattacks. There is also no 100% protection from such attacks. Therefore, it is advisable to carry out various studies related to the effects of the different cyberattacks on the performance of the specific devices under attack. In this work, a study was carried out to determine how individual TCP DoS attacks affect the parameters of VoIP (Voice over IP) voice and video streams. For the purpose of this work, a model of a simple IP network has been created using the GNS3 IP network-modeling platform. The VoIP platform used was Asterisk Free PBX. Tools from Kali Linux were used to implement the individual TCP DoS attacks; IP-network-monitoring tools and round-trip-delay-measurement tools were also used. The proposed study is applicable to multiple VoIP platforms wherein voice and video traffic are passed/processed by the VoIP server. From the obtained results, it was found that Asterisk Free PBX is very well secured against TCP DoS attacks, which do not affect the platform performance or the parameters of the voice and video streams. The values of the observed parameters, such as jitter, packet loss, round-trip delay, etc., are very far from the maximum allowable values. We also observed a low load on the CPU and RAM of the system during the whole study. Full article
Show Figures

Figure 1

19 pages, 1474 KiB  
Article
Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail
by Aruna Mogarala Guruvaya, Archana Kollu, Parameshachari Bidare Divakarachari, Przemysław Falkowski-Gilski and Hirald Dwaraka Praveena
Telecom 2024, 5(3), 537-555; https://doi.org/10.3390/telecom5030028 - 1 Jul 2024
Viewed by 359
Abstract
In the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied [...] Read more.
In the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied customer demands. In order to obtain a better retail sales forecasting, deep learning models are preferred. In this manuscript, an effective Bi-GRU is proposed for accurate sales forecasting related to E-commerce companies. Initially, retail sales data are acquired from two benchmark online datasets: Rossmann dataset and Walmart dataset. From the acquired datasets, the unreliable samples are eliminated by interpolating missing data, outlier’s removal, normalization, and de-normalization. Then, feature engineering is carried out by implementing the Adaptive Particle Swarm Optimization (APSO) algorithm, Recursive Feature Elimination (RFE) technique, and Minimum Redundancy Maximum Relevance (MRMR) technique. Followed by that, the optimized active features from feature engineering are given to the Bi-Directional Gated Recurrent Unit (Bi-GRU) model for precise retail sales forecasting. From the result analysis, it is seen that the proposed Bi-GRU model achieves higher results in terms of an R2 value of 0.98 and 0.99, a Mean Absolute Error (MAE) of 0.05 and 0.07, and a Mean Square Error (MSE) of 0.04 and 0.03 on the Rossmann and Walmart datasets. The proposed method supports the retail sales forecasting by achieving superior results over the conventional models. Full article
(This article belongs to the Special Issue Digitalization, Information Technology and Social Development)
Show Figures

Figure 1

15 pages, 2222 KiB  
Article
Two-Level Clustering Algorithm for Cluster Head Selection in Randomly Deployed Wireless Sensor Networks
by Sagun Subedi, Shree Krishna Acharya, Jaehee Lee and Sangil Lee
Telecom 2024, 5(3), 522-536; https://doi.org/10.3390/telecom5030027 - 26 Jun 2024
Viewed by 614
Abstract
Clustering strategy in wireless sensor networks (WSNs) affects the lifetime, adaptability, and energy productivity of the wireless network system. The low-energy adaptive clustering hierarchy (LEACH) protocol is a convention used to improve the lifetime of WSNs. In this paper, a novel energy-efficient clustering [...] Read more.
Clustering strategy in wireless sensor networks (WSNs) affects the lifetime, adaptability, and energy productivity of the wireless network system. The low-energy adaptive clustering hierarchy (LEACH) protocol is a convention used to improve the lifetime of WSNs. In this paper, a novel energy-efficient clustering algorithm is proposed, with the aim of improving the energy efficiency of WSNs by reducing and balancing the energy consumptions. The clustering-based convention adjusts the energy utilization by allowing an equal opportunity for each node to turn them into a cluster head (CH). Two-level clustering (TLC) is introduced by adopting LEACH convention where CH selection process undergoes first and second level of clustering to overcome boundary problem in LEACH protocol. The TLC method structures nodes within the scope of the appointed CHs, in order to extend the lifetime of the system. The simulation results show that, in comparison with state-of-the-art methodologies, our proposed method significantly enhanced the system lifetime. Full article
(This article belongs to the Special Issue Performance Criteria for Advanced Wireless Communications)
Show Figures

Figure 1

14 pages, 4673 KiB  
Article
Experimental Evaluation of a MIMO Radar Performance for ADAS Application
by Federico Dios, Sergio Torres-Benito, Jose A. Lázaro, Josep R. Casas, Jorge Pinazo and Adolfo Lerín
Telecom 2024, 5(3), 508-521; https://doi.org/10.3390/telecom5030026 - 24 Jun 2024
Viewed by 456
Abstract
Among the sensors necessary to equip vehicles with an autonomous driving system, there is a tacit agreement that cameras and some type of radar would be essential. The ability of radar to spatially locate objects (pedestrians, other vehicles, trees, street furniture, and traffic [...] Read more.
Among the sensors necessary to equip vehicles with an autonomous driving system, there is a tacit agreement that cameras and some type of radar would be essential. The ability of radar to spatially locate objects (pedestrians, other vehicles, trees, street furniture, and traffic signs) makes it the most economical complement to the cameras in the visible spectrum in order to give the correct depth to scenes. From the echoes obtained by the radar, some data fusion algorithms will try to locate each object in its correct place within the space surrounding the vehicle. In any case, the usefulness of the radar will be determined by several performance parameters, such as its average error in distance, the maximum errors, and the number of echoes per second it can provide. In this work, we have tested experimentally the AWR1843 MIMO radar from Texas Instruments to measure those parameters. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

Previous Issue
Back to TopTop