Hybrid Modeling of Machine Learning and Phenomenological Model for Predicting the Biomass Gasification Process in Supercritical Water for Hydrogen Production
Abstract
:1. Introduction
The Process of Gasification of Biomass in Supercritical Water
2. Methodology
2.1. Phenomenological Modeling of the Process
Estimation of Fugacity Coefficients Using the Cubic Peng–Robinson Equation
2.2. Mathematical Formulation and Solution of the Equilibrium Problem
2.3. Hybrid Architecture Proposed for the Hybrid Modeling of the Problem
2.3.1. Data Modeling
Attribute Selection, Data Standardization, Model Selection, and Validation
3. Results and Discussions
3.1. Presentation of the Database
3.2. Process Monitoring with the Hybrid Model
3.3. Conclusions about the Approach and Gains from the Point of View of Process Engineering
4. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
G | Total Gibbs energy |
l | Liquid phase |
s | Solid phase |
v | Vapor phase |
NC | Number of components |
NF | Number of phases |
Number of moles of component i in phase k; i = [1, 2, 3, …, NC]; k = [v, l, s] | |
R | Universal gas constant |
T | Temperature |
P | Pressure |
µik | Chemical potential of component i in phase k; i = [1, 2, 3, …, NC]; k = [v, l, s] |
Fugacity of component i in phase k | |
Fugacity of pure species i in a standard reference state | |
Number of atoms of element i in component m | |
Number of moles in standard state | |
Enthalpy of component i in phase k | |
Enthalpy of component i in the standard state | |
H0 | Total enthalpy |
Heat capacity of component i in phase k; i = [1, 2, 3, …, NC]; k = [v, l, s] | |
Chemical potential of component i in a standard reference state | |
Coefficient of fugacity of component i in phase k; i = [1, 2, 3, …, NC]; k = [v, l] | |
Mole fraction of component i in the vapor phase | |
Molar fraction of component i in the liquid phase | |
Component saturation pressure i | |
Constants for calculating component saturation pressure i | |
Constants for calculating the heat capacity of the component i in the vapor phase. i = [1, 2, 3, …, NC]; k = [1, 2, 3 and 4] | |
Constants for calculating the heat capacity of component i in the solid phase | |
Zi | Compressibility factor |
A, B, u, w | Parameters of the cubic equation of state |
am | Attraction parameter for mixtures |
bm | Repulsion parameter for mixtures |
kij | Binary interaction parameter |
Tc,i | Critical component temperature i |
Pc,i | Critical component pressure i |
wi | Acentric factor |
M | Constant for Kamath, Biegler, and Grossmann constraints |
Slack variables for Kamath, Biegler, and Grossmann constraints | |
n | Number of moles |
H2k | Moles of hydrogen; k = [real, ideal, prredict] |
Actual value of the target variable | |
Estimated value of the target variable | |
Average value of the target variable |
References
- Seborg, D.E.; Edgar, T.F.; Mellichamp, D.A.; Doyle, F.J., III. Process Dynamics and Control; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Ciuffi, B.; Chiaramonti, D.; Rizzo, A.M.; Frediani, M.; Rosi, L. A critical review of SCWG in the context of available gasification technologies for plastic waste. Appl. Sci. 2020, 10, 6307. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Comparison of several glycerol reforming methods for hydrogen and syngas production using Gibbs energy minimization. Int. J. Hydrogen Energy 2014, 39, 17969–17984. [Google Scholar] [CrossRef]
- Barros, T.V.; Carregosa, J.D.C.; Wisniewski, A., Jr.; Freitas, A.C.D.; Guirardello, R.; Ferreira-Pinto, L.; Bonfim-Rocha, L.; Jegatheesan, V.; Cardozo-Filho, L. Assessment of black liquor hydrothermal treatment under sub- and supercritical conditions: Products distribution and economic perspectives. Chemosphere 2022, 286, 131774. [Google Scholar] [CrossRef]
- Reddy, S.N.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Supercritical water gasification of biomass for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 6912–6926. [Google Scholar] [CrossRef]
- Mitoura dos Santos Junior, J.; Gomes, J.G.; de Freitas, A.C.D.; Guirardello, R. An Analysis of the Methane Cracking Process for CO2-Free Hydrogen Production Using Thermodynamic Methodologies. Methane 2022, 1, 243–261. [Google Scholar] [CrossRef]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Gomes, J.G.; Mitoura, J.; Guirardello, R. Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae. Energy 2022, 260, 125030. [Google Scholar] [CrossRef]
- Li, M.F.; Sun, S.N.; Xu, F.; Sun, R.C. Organosolv fractionation of lignocelluloses for fuels, chemicals and materials: A biorefinery processing perspective. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 341–379. [Google Scholar] [CrossRef]
- Ding, W.; Shi, J.; Wei, W.; Cao, C.; Jin, H. A molecular dynamics simulation study on solubility behaviors of polycyclic aromatic hydrocarbons in supercritical water/hydrogen environment. Int. J. Hydrogen Energy 2021, 46, 2899–2904. [Google Scholar] [CrossRef]
- Jin, H.; Guo, L.; Guo, J.; Ge, Z.; Cao, C.; Lu, Y. Study on gasification kinetics of hydrogen production from lignite in supercritical water. Int. J. Hydrogen Energy 2015, 40, 7523–7529. [Google Scholar] [CrossRef]
- Guan, Q.; Wei, C.; Savage, P.E. Kinetic model for supercritical water gasification of algae. Phys. Chem. Chem. Phys. 2012, 14, 3140. [Google Scholar] [CrossRef]
- Ge, Z.; Song, Z.; Ding, S.X.; Huang, B. Data Mining and Analytics in the Process Industry: The Role of Machine Learning. IEEE Access. 2017, 5, 20590–20616. [Google Scholar] [CrossRef]
- Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE J. 2019, 65, 466–478. [Google Scholar] [CrossRef]
- Schweidtmann, A.M.; Esche, E.; Fischer, A.; Kloft, M.; Repke, J.; Sager, S.; Mitsos, A. Machine Learning in Chemical Engineering: A Perspective. Chem. Ing. Tech. 2021, 93, 2029–2039. [Google Scholar] [CrossRef]
- Harper, D.R.; Nandy, A.; Arunachalam, N.; Duan, C.; Janet, J.P.; Kulik, H.J. Representations and strategies for transferable machine learning improve model performance in chemical discovery. J. Chem. Phys. 2022, 156, 074101. [Google Scholar] [CrossRef]
- von Lilienfeld, O.A.; Burke, K. Retrospective on a decade of machine learning for chemical discovery. Nat. Commun. 2020, 11, 4895. [Google Scholar] [CrossRef]
- Rzychoń, M.; Żogała, A.; Róg, L. Experimental study and extreme gradient boosting (XGBoost) based prediction of caking ability of coal blends. J. Anal. Appl. Pyrolysis 2021, 156, 105020. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Li, Y. Pipeline Safety Early Warning by Multifeature-Fusion CNN and LightGBM Analysis of Signals from Distributed Optical Fiber Sensors. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Z.; Wu, D.; Luo, Z.; Zhao, S.; Wang, Y.; Deng, J. Prediction of coal self-ignition tendency using machine learning. Fuel 2022, 325, 124832. [Google Scholar] [CrossRef]
- Azarpour, A.; Borhani, T.N.G.; Alwi, S.R.W.; Manan, Z.A.; Mutalib, M.I.A. A generic hybrid model development for process analysis of industrial fixed-bed catalytic reactors. Chem. Eng. Res. Des. 2017, 117, 149–167. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, Y.; Chen, J.; Liu, X.; Wu, X.; Chen, Y. A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas. Energy 2023, 273, 127126. [Google Scholar] [CrossRef]
- Shahbaz, M.; Taqvi, S.A.; Loy, A.C.M.; Inayat, A.; Uddin, F.; Bokhari, A.; Naqvi, S.R. Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO. Renew. Energy 2019, 132, 243–254. [Google Scholar] [CrossRef]
- Pashchenko, D. Thermodynamic equilibrium analysis of combined dry and steam reforming of propane for thermochemical waste-heat recuperation. Int. J. Hydrogen Energy 2017, 42, 14926–14935. [Google Scholar] [CrossRef]
- Rocha, S.A.; Guirardello, R. An approach to calculate solid–liquid phase equilibrium for binary mixtures. Fluid Phase Equilib. 2009, 281, 12–21. [Google Scholar] [CrossRef]
- Voll, F.A.P.; Rossi, C.C.R.S.; Silva, C.; Guirardello, R.; Souza, R.O.M.A.; Cabral, V.F.; Cardozo-Filho, L. Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose. Int. J. Hydrogen Energy 2009, 34, 9737–9744. [Google Scholar] [CrossRef]
- Hantoko, D.; Antoni; Kanchanatip, E.; Yan, M.; Weng, Z.; Gao, Z.; Zhong, Y. Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production. Process. Saf. Environ. Prot. 2019, 131, 63–72. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Use of CO2 as a co-reactant to promote syngas production in supercritical water gasification of sugarcane bagasse. J. CO2 Util. 2015, 9, 66–73. [Google Scholar] [CrossRef]
- Jin, H.; Lu, Y.; Liao, B.; Guo, L.; Zhang, X. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor. Int. J. Hydrogen Energy 2010, 35, 7151–7160. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Sandler, S.I. Chemical, Biochemical, and Engineering Thermodynamics; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Cox, K.R.; Chapman, W.G. The Properties of Gases and Liquids, 5th ed.; Poling, B.E., Prausnitz, J.M., O’Connell, J.P., Eds.; McGraw-Hill: New York, NY, USA, 2001; 768p, ISBN 0-07-011682-2. [Google Scholar] [CrossRef]
- Smith, J.M.; Van Ness, H.C.; Abbott, M.M.; Swihart, M.T. Introduction to Chemical Engineering Thermodynamics; McGraw-Hill: Singapore, 2018. [Google Scholar]
- Kamath, R.S.; Biegler, L.T.; Grossmann, I.E. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. Comput. Chem. Eng. 2010, 34, 2085–2096. [Google Scholar] [CrossRef]
- Dowling, A.W.; Balwani, C.; Gao, Q.; Biegler, L.T. Optimization of sub-ambient separation systems with embedded cubic equation of state thermodynamic models and complementarity constraints. Comput. Chem. Eng. 2015, 81, 323–343. [Google Scholar] [CrossRef]
- Freitas, A.C.D.; Guirardello, R. Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis. J. Nat. Gas Chem. 2012, 21, 571–580. [Google Scholar] [CrossRef]
- Santos, J.M.D.; De Sousa, G.F.B.; Vidotti, A.D.S.; De Freitas, A.C.D.; Guirardello, R. Optimization of glycerol gasification process in supercritical water using thermodynamic approach. Chem. Eng. Trans. 2021, 86, 847–852. [Google Scholar] [CrossRef]
- Tang, H.; Kitagawa, K. Supercritical water gasification of biomass: Thermodynamic analysis with direct Gibbs free energy minimization. Chem. Eng. J. 2005, 106, 261–267. [Google Scholar] [CrossRef]
- Basu, P.; Mettanant, V. Biomass Gasification in Supercritical Water—A Review. Int. J. Chem. React. Eng. 2009, 7. [Google Scholar] [CrossRef]
- Yan, Q.; Guo, L.; Lu, Y. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers. Manag. 2006, 47, 1515–1528. [Google Scholar] [CrossRef]
- Feng, W.; van der Kooi, H.J.; de Swaan Arons, J. Biomass conversions in subcritical and supercritical water: Driving force, phase equilibria, and thermodynamic analysis. Chem. Eng. Process. Process. Intensif. 2004, 43, 1459–1467. [Google Scholar] [CrossRef]
- Ćalasan, M.P.; Nikitović, L.; Mujović, S. CONOPT solver embedded in GAMS for optimal power flow. J. Renew. Sustain. Energy 2019, 11, 046301. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Withag, J.A.M.; Smeets, J.R.; Bramer, E.A.; Brem, G. System model for gasification of biomass model compounds in supercritical water—A thermodynamic analysis. J. Supercrit. Fluids 2012, 61, 157–166. [Google Scholar] [CrossRef]
- Castello, D.; Fiori, L. Kinetics modeling and main reaction schemes for the supercritical water gasification of methanol. J. Supercrit. Fluids 2012, 69, 64–74. [Google Scholar] [CrossRef]
- Goodwin, A.K.; Rorrer, G.L. Reaction rates for supercritical water gasification of xylose in a micro-tubular reactor. Chem. Eng. J. 2010, 163, 10–21. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Wu, X.; E, J.; Leng, E.; Zhang, F.; Liao, G. Thermodynamic, environmental analysis and comprehensive evaluation of supercritical water gasification of biomass fermentation residue. J. Clean. Prod. 2022, 361, 132126. [Google Scholar] [CrossRef]
- García, C.B.; García, J.; Martín, M.M.L.; Salmerón, R. Collinearity: Revisiting the variance inflation factor in ridge regression. J. Appl. Stat. 2015, 42, 648–661. [Google Scholar] [CrossRef]
Components | Tc (K) | Pc (bar) | Vc (m3/kmol) | ω | a | b | c | ∆Hf (cal/mol) | ∆Gf (cal/mol) |
---|---|---|---|---|---|---|---|---|---|
H2O | 647.140 | 220.640 | 0.056 | 0.344 | 18.304 | 3816.440 | −46.130 | −5.78 × 104 | −5.46 × 104 |
H2 | 32.980 | 12.930 | 0.064 | −0.217 | 13.633 | 164.900 | 3.190 | 0 | 0 |
CH4 | 190.560 | 45.990 | 0.099 | 0.011 | 15.224 | 597.840 | −7.160 | −1.78 × 104 | −1.21 × 104 |
CO2 | 304.150 | 73.740 | 0.094 | 0.225 | 22.590 | 3103.390 | −0.160 | −9.41 × 104 | −9.43 × 104 |
CO | 132.850 | 34.940 | 0.093 | 0.045 | 14.369 | 530.220 | −13.150 | −2.64 × 104 | −3.28 × 104 |
O2 | 154.580 | 50.430 | 0.073 | 0.022 | 15.408 | 734.550 | −6.450 | 0 | 0 |
N2 | 126.200 | 33.980 | 0.090 | 0.037 | 14.954 | 588.720 | −6.600 | 0 | 0 |
CH4O | 512.640 | 80.970 | 0.118 | 0.565 | 18.588 | 3626.550 | −34.290 | −4.80 × 104 | −3.88 × 104 |
C2H6 | 305.320 | 48.720 | 0.146 | 0.099 | 15.664 | 1511.420 | −17.160 | −2.00 × 104 | −7.61 × 103 |
C3H8 | 369.830 | 42.480 | 0.200 | 0.152 | 15.726 | 1872.460 | −25.160 | −2.50 × 104 | −5.81 × 103 |
NH3 | 405.400 | 113.530 | 0.072 | 0.257 | 16.948 | 2132.500 | −32.981 | −1.10 × 104 | −3.92 × 103 |
C2H4 | 282.340 | 50.410 | 0.131 | 0.087 | 15.534 | 1347.010 | −18.150 | 1.25 × 104 | 1.64 × 104 |
Components | A * | B * | C * |
---|---|---|---|
C | 35.190 | 1.53 × 10−3 | −1.72 × 105 |
CaO | 121.286 | 8.80 × 10−4 | −2.08 × 105 |
CaCO3 | 249.806 | 5.24 × 10−3 | −6.20 × 105 |
Ca(OH)3 | 190.692 | 1.08 × 10−2 | 0 |
NaOH | 0.240 | 3.24 × 10−2 | 3.87 × 105 |
Components | A0 * | A1 * | A2 * | A3 * | A4 * |
---|---|---|---|---|---|
H2O | 87.329 | −8.32 × 10−3 | 2.79 × 10−5 | −3.11 × 10−8 | 1.26 × 10−11 |
H2 | 57.285 | 7.31 × 10−3 | −1.53 × 10−5 | 1.38 × 10−8 | −4.23 × 10−12 |
CH4 | 90.766 | −1.78 × 10−2 | 7.21 × 10−5 | −6.77 × 10−8 | 2.17 × 10−11 |
CO2 | 64.756 | 2.69 × 10−3 | 2.98 × 10−5 | −4.72 × 10−8 | 2.10 × 10−11 |
CO | 77.731 | 7.78 × 10−3 | 2.35 × 10−5 | −2.59 × 10−8 | 1.02 × 10−11 |
O2 | 72.128 | −3.56 × 10−3 | 1.31 × 10−5 | −1.19 × 10−8 | 3.56 × 10−12 |
N2 | 70.320 | −5.19 × 10−4 | 1.39 × 10−7 | 3.12 × 10−9 | −1.97 × 10−12 |
CH4O | 93.667 | −1.39 × 10−2 | 8.37 × 10−5 | −8.83 × 10−8 | 3.05 × 10−11 |
C2H6 | 83.017 | −8.80 × 10−3 | 1.12 × 10−4 | −1.32 × 10−7 | 4.94 × 10−11 |
C3H8 | 76.440 | 1.02 × 10−2 | 1.19 × 10−4 | −1.57 × 10−7 | 6.12 × 10−11 |
NH3 | 84.209 | −8.38 × 10−3 | 4.06 × 10−5 | −4.22 × 10−8 | 1.51 × 10−11 |
C2H4 | 83.880 | −1.75 × 10−2 | 1.15 × 10−4 | −1.34 × 10−7 | 4.99 × 10−11 |
MAE | R2 | |
---|---|---|
Linear Regression | 0.225 | 0.834 |
Hybrid Model—LASSO | 0.080 | 0.984 |
Hybrid Model—Linear Regression | 0.077 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos Junior, J.M.; Zelioli, Í.A.M.; Mariano, A.P. Hybrid Modeling of Machine Learning and Phenomenological Model for Predicting the Biomass Gasification Process in Supercritical Water for Hydrogen Production. Eng 2023, 4, 1495-1515. https://doi.org/10.3390/eng4020086
dos Santos Junior JM, Zelioli ÍAM, Mariano AP. Hybrid Modeling of Machine Learning and Phenomenological Model for Predicting the Biomass Gasification Process in Supercritical Water for Hydrogen Production. Eng. 2023; 4(2):1495-1515. https://doi.org/10.3390/eng4020086
Chicago/Turabian Styledos Santos Junior, Julles Mitoura, Ícaro Augusto Maccari Zelioli, and Adriano Pinto Mariano. 2023. "Hybrid Modeling of Machine Learning and Phenomenological Model for Predicting the Biomass Gasification Process in Supercritical Water for Hydrogen Production" Eng 4, no. 2: 1495-1515. https://doi.org/10.3390/eng4020086
APA Styledos Santos Junior, J. M., Zelioli, Í. A. M., & Mariano, A. P. (2023). Hybrid Modeling of Machine Learning and Phenomenological Model for Predicting the Biomass Gasification Process in Supercritical Water for Hydrogen Production. Eng, 4(2), 1495-1515. https://doi.org/10.3390/eng4020086