Evaluation of Affordable Agricultural Drones for Small and Medium Farms
Abstract
:1. Introduction
- Guidance for farmers: The study provides clear, practical advice for small and medium-sized farmers on which drone models are best suited for agricultural tasks. By weighing technical and economic factors, this guidance highlights the strengths and weaknesses of specific models, making decision making easier.
- Innovative evaluation method: The use of the fuzzy A-SWARA and MARCOS methods offers a new way to evaluate drones in agriculture, focusing on subjective decision making that can be adapted for similar studies in the future.
- Sustainable agriculture: This drone evaluation contributes directly to sustainable farming by helping optimize resource use in agriculture, which can reduce costs, improve efficiency, and promote ecologically and economically sustainable production practices—vital for the long-term health of agriculture.
- Supporting small farm modernization: This research encourages a broader conversation about applying new technologies to small farms and positioning drones as an effective modernization tool. This can increase the competitiveness of small and medium farms.
- Economic development in rural areas: By lowering costs and boosting productivity, this research can support economic growth in rural regions. Drones help farmers use resources more efficiently, increase income, and improve living standards in rural communities.
2. Materials and Methods
- -
- Selection of experts, drones, and criteria;
- -
- Evaluation of criteria and alternatives;
- -
- Application of fuzzy SWARA and MARCOS methods;
- -
- Analysis of results using comparative and sensitivity analysis.
3. Results
4. Discussion
- Posavina, the largest lowland area in Bosnia and Herzegovina, holds significant potential for expanding agricultural production.
- Bosnia and Herzegovina, as a developing country, relies heavily on traditional farming practices, with limited adoption of smart technologies.
- Drone prices have decreased, making this technology more accessible to farmers.
- Drone use in Bosnia and Herzegovina’s agriculture sector remains limited, highlighting the need for studies like this to guide adoption in the region.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.Q.; Han, X.X.; Lin, Z.B.; Rahman, A. Enhanced Pest and Disease Detection in Agriculture Using Deep Learning-Enabled Drones. Acadlore Trans. AI Mach. Learn. 2024, 3, 1–10. [Google Scholar] [CrossRef]
- Maghazei, O.; Netland, T. Drones in manufacturing: Exploring opportunities for research and practice. J. Manuf. Technol. Manag. 2020, 31, 1237–1259. [Google Scholar] [CrossRef]
- Wang, C.; Fu, X. Environmental Cost Accounting in the Sugar Industry: An MFCA Perspective on “Sweet” Environmental Burdens. J. Green Econ. Low-Carbon Dev. 2024, 3, 45–55. [Google Scholar] [CrossRef]
- Javaid, M.; Khan, I.H.; Singh, R.P.; Rab, S.; Suman, R. Exploring Contributions of Drones towards Industry 4.0. Ind. Robot Int. J. Robot. Res. Appl. 2022, 49, 476–490. [Google Scholar] [CrossRef]
- Panday, U.S.; Shrestha, N.; Maharjan, S.; Pratihast, A.K.; Shahnawaz; Shrestha, K.L.; Aryal, J. Correlating the Plant Height of Wheat with Above-Ground Biomass and Crop Yield Using Drone Imagery and Crop Surface Model, A Case Study from Nepal. Drones 2020, 4, 28. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in Agriculture: A Review and Bibliometric Analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Nhamo, L.; Magidi, J.; Nyamugama, A.; Clulow, A.D.; Sibanda, M.; Chimonyo, V.G.P.; Mabhaudhi, T. Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles. Agriculture 2020, 10, 256. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Chauhan, A.; Soni, S.K. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite- and drone-based remote sensing of crops and soils for smart farming—A review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Loures, L.; Chamizo, A.; Ferreira, P.; Loures, A.; Castanho, R.; Panagopoulos, T. Assessing the Effectiveness of Precision Agriculture Management Systems in Mediterranean Small Farms. Sustainability 2020, 12, 3765. [Google Scholar] [CrossRef]
- Hassler, S.C.; Baysal-Gurel, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy 2019, 9, 618. [Google Scholar] [CrossRef]
- Gül, A.; Cakmak, E.; Karakas, A. Drone Selection for Forest Surveillance and Fire Detection Using Interval Valued Neutrosophic EDAS method. Facta Univ. Ser. Mech. Eng. 2024; online first. [Google Scholar] [CrossRef]
- Radovanović, M.; Božanić, D.; Tešić, D.; Puška, A.; Hezam, I.; Jana, C. Application of Hybrid DIBR-FUCOM-LMAW-Bonferroni-GREY-EDAS Model in Multicriteria Decision-Making. Facta Univ. Ser. Mech. Eng. 2023, 21, 387–403. [Google Scholar] [CrossRef]
- Roy, S.; Ciobotaru, A.-M. Does integrated transport topology act as a stimulus for inclusive growth and regional development in Bosnia and Herzegovina? Reg. Sci. Policy Pract. 2024, 16, 12732. [Google Scholar] [CrossRef]
- Nedeljković, M.; Puška, A.; Jeločnik, M.; Božaniž, D.; Subić, J.; Stilić, A.; Maksimović, A. Enhancing fruit orchard establishment: A multicriteria approach for plum variety selection. Yugosl. J. Oper. Res. 2024, 34, 355–380. [Google Scholar] [CrossRef]
- Tešić, D.; Marinković, D. Application of fermatean fuzzy weight operators and MCDM model DIBR-DIBR II-NWBM-BM for efficiency-based selection of a complex combat system. J. Decis. Anal. Intell. Comput. 2023, 3, 243–256. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Sałabun, W. SITW Method: A New Approach to Re-identifying Multi-criteria Weights in Complex Decision Analysis. Spectr. Mech. Eng. Oper. Res. 2024, 1, 215–226. [Google Scholar] [CrossRef]
- Sarfraz, M. Application of Interval-valued T-spherical Fuzzy Dombi Hamy Mean Operators in the antiviral mask selection against COVID-19. J. Decis. Anal. Intell. Comput. 2024, 4, 67–98. [Google Scholar] [CrossRef]
- Kamran, M.; Ashraf, S.; Kalim Khan, S.; Hussain Khan, A.; Zardi, H.; Mehmood, S. Integrated Decision-Making Framework for Hospital Development: A Single-Valued Neutrosophic Probabilistic Hesitant Fuzzy Approach with Innovative Aggregation Operators. Yugosl. J. Oper. Res. 2024, 34, 515–550. [Google Scholar] [CrossRef]
- Ecer, F.; Ögel, İ.Y.; Krishankumar, R.; Tirkolaee, E.B. The q-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era. Artif. Intell. Rev. 2023, 56, 13373–13406. [Google Scholar] [CrossRef]
- Merz, M.; Pedro, D.; Skliros, V.; Bergenhem, C.; Himanka, M.; Houge, T.; Matos-Carvalho, J.P.; Lundkvist, H.; Cürüklü, B.; Hamrén, R.; et al. Autonomous UAS-Based Agriculture Applications: General Overview and Relevant European Case Studies. Drones 2022, 6, 128. [Google Scholar] [CrossRef]
- Ukaegbu, U.F.; Tartibu, L.K.; Okwu, M.O.; Olayode, I.O. Development of a Light-Weight Unmanned Aerial Vehicle for Precision Agriculture. Sensors 2021, 21, 4417. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-B.; Lee, S.-H. Battery Balancing Algorithm for an Agricultural Drone Using a State-of-Charge-Based Fuzzy Controller. Appl. Sci. 2020, 10, 5277. [Google Scholar] [CrossRef]
- Ahmed, S.; Qiu, B.; Ahmad, F.; Kong, C.-W.; Xin, H. A State-of-the-Art Analysis of Obstacle Avoidance Methods from the Perspective of an Agricultural Sprayer UAV’s Operation Scenario. Agronomy 2021, 11, 1069. [Google Scholar] [CrossRef]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Wang, J.; Noguchi, N.; He, Y. Obstacle avoidance method based on double DQN for agricultural robots. Comput. Electron. Agric. 2023, 204, 107546. [Google Scholar] [CrossRef]
- Parmaksiz, O.; Cinar, G. Technology Acceptance among Farmers: Examples of Agricultural Unmanned Aerial Vehicles. Agronomy 2023, 13, 2077. [Google Scholar] [CrossRef]
- Aytekin, A.; Korucuk, S. Evaluating Performance-Based Logistics in Manufacturing Through Polytopic Fuzzy SWARA: A Criterion Assessment Approach. J. Eng. Manag. Syst. Eng. 2024, 3, 65–71. [Google Scholar] [CrossRef]
- Shahid, T.; Ashraf, S.; Mashat, D.S. Enhancing Urban Development with Picture Fuzzy Sets: A Strategic Decision Support Framework. J. Urban Dev. Manag. 2023, 2, 172–180. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement Alternatives and Ranking according to COmpromise Solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Huskanović, E.; Bjelić, D.; Novarlić, B. Optimising the Efficiency of Municipal Utility Vehicle Fleets Using DEA-CRITIC-MARCOS: A Sustainable Waste Management Approach. J. Intell. Manag. Decis. 2024, 3, 139–149. [Google Scholar] [CrossRef]
- Więckowski, J.; Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. How Do the Criteria Affect Sustainable Supplier Evaluation?—A Case Study Using Multi-Criteria Decision Analysis Methods in a Fuzzy Environment. J. Eng. Manag. Syst. Eng. 2023, 2, 37–52. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W. Comparative Sensitivity Analysis in Composite Material Selection: Evaluating OAT and COMSAM Methods in Multi-criteria Decision-making. Spectr. Mech. Eng. Oper. Res. 2025, 2, 1–12. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Čadro, S.; Marković, M.; Hadžić, A.; Hadžić, A.; Žurovec, O. Assessing the impact of climate change on extreme hydrological events in Bosnia and Herzegovina using SPEI. J. Cent. Eur. Agric. 2024, 25, 531–541. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar] [CrossRef]
- Gabriel, A.; Gandorfer, M. Adoption of digital technologies in agriculture—An inventory in a european small-scale farming region. Precis. Agric. 2023, 24, 68–91. [Google Scholar] [CrossRef]
- McCarthy, C.; Nyoni, Y.; Kachamba, D.J.; Banda, L.B.; Moyo, B.; Chisambi, C.; Banfill, J.; Hoshino, B. Can Drones Help Smallholder Farmers Improve Agriculture Efficiencies and Reduce Food Insecurity in Sub-Saharan Africa? Local Perceptions from Malawi. Agriculture 2023, 13, 1075. [Google Scholar] [CrossRef]
- Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones 2024, 8, 686. [Google Scholar] [CrossRef]
- Borissov, B.; Hristozov, Y. Potential for using artifical intelligence in public administration. Econ. Innov. Econ. Res. J. 2024, 12, 409–423. [Google Scholar] [CrossRef]
- Więckowski, J.; Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. RANCOM: A novel approach to identifying criteria relevance based on inaccuracy expert judgments. Eng. Appl. Artif. Intell. 2023, 122, 106114. [Google Scholar] [CrossRef]
- Trung, D.D.; Dudić, B.; Dung, H.T.; Truong, N.X. Innovation in financial health assessment: Applying MCDM techniques to banks in Vietnam. Econ. Innov. Econ. Res. J. 2024, 12, 21–33. [Google Scholar] [CrossRef]
- Kondo, S.; Yoshimoto, N.; Nakayama, Y. Farm Monitoring System with Drones and Optical Camera Communication. Sensors 2024, 24, 6146. [Google Scholar] [CrossRef] [PubMed]
- Škuflić, L.; Šokčević, S.; Bašić, M. Sustainable development and competitiveness: Is there a need for GCI reconstruction? Econ. Innov. Econ. Res. J. 2024, 12, 153–173. [Google Scholar] [CrossRef]
Designation | Camera | Range | Flight Autonomy | Weight | Obstacle Sensors | Max Speed | Price Range | Payload |
---|---|---|---|---|---|---|---|---|
D1 | 20 MP | 7 km | 30 min | 1375 g | Yes | 72 km/h | EUR 1500–1800 | 500 g |
D2 | 21 MP | 4 km | 25 min | 320 g | No | 55 km/h | EUR 700–900 | 200 g |
D3 | 48 MP | 10 km | 34 min | 570 g | Yes | 68 km/h | EUR 900–1000 | 200 g |
D4 | 8 MP | 8 km | 43 min | 700 g | No | 60 km/h | EUR 400–600 | 100 g |
D5 | 12 MP | 8 km | 35 min | 790 g | No | 65 km/h | EUR 500–600 | 200 g |
D6 | 48 MP | 12 km | 34 min | 249 g | Yes | 57 km/h | EUR 1000–1100 | 100 g |
D7 | 50 MP | 10 km | 28 min | 249 g | Yes | 54 km/h | EUR 800–900 | 300 g |
D8 | 4 K | 1 km | 26 min | 495 g | No | 45 km/h | EUR 300–500 | 100 g |
Experts | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
---|---|---|---|---|---|---|---|---|---|---|
Expert 1 | 8 | 8 | 9 | 8 | 7 | 7 | 9 | 6 | 7 | 8 |
Expert 2 | 7 | 8 | 9 | 7 | 7 | 6 | 9 | 6 | 7 | 9 |
Expert 3 | 7 | 9 | 9 | 7 | 7 | 6 | 9 | 6 | 8 | 9 |
Expert 4 | 6 | 9 | 9 | 7 | 7 | 8 | 9 | 6 | 9 | 9 |
Expert 5 | 6 | 8 | 9 | 6 | 7 | 5 | 9 | 5 | 8 | 9 |
Expert 6 | 5 | 9 | 9 | 7 | 6 | 6 | 7 | 6 | 8 | 6 |
Expert 7 | 6 | 9 | 9 | 6 | 5 | 6 | 7 | 6 | 8 | 9 |
Expert 8 | 7 | 8 | 8 | 6 | 6 | 6 | 8 | 7 | 8 | 8 |
Expert 9 | 6 | 9 | 8 | 7 | 6 | 6 | 8 | 6 | 8 | 6 |
Expert 10 | 6 | 8 | 8 | 6 | 6 | 5 | 8 | 5 | 7 | 8 |
Id | |||
---|---|---|---|
C3 | (77, 87, 90) | (0.86, 1.00, 1.00) | (0.10, 0.11, 0.11) |
C2 | (75, 85, 90) | (0.83, 0.94, 1.00) | (0.09, 0.11, 0.11) |
C7 | (73, 83, 88) | (0.81, 0.92, 0.98) | (0.09, 0.10, 0.11) |
C10 | (71, 81, 86) | (0.79, 0.90, 0.96) | (0.09, 0.10, 0.11) |
C9 | (68, 78, 87) | (0.76, 0.87, 0.97) | (0.08, 0.10, 0.11) |
C4 | (57, 67, 77) | (0.63, 0.74, 0.86) | (0.07, 0.08, 0.10) |
C5 | (54, 64, 74) | (0.60, 0.71, 0.82) | (0.07, 0.08, 0.09) |
C1 | (54, 64, 74) | (0.60, 0.71, 0.82) | (0.07, 0.08, 0.09) |
C6 | (51, 61, 71) | (0.57, 0.68, 0.79) | (0.06, 0.08, 0.09) |
C8 | (49, 59, 69) | (0.54, 0.66, 0.77) | (0.06, 0.07, 0.09) |
Expert 1 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
Drone 1 | 5 | 6 | 5 | 4 | 6 | 6 | 6 | 7 | 8 | 6 |
Drone 2 | 6 | 5 | 5 | 4 | 6 | 5 | 4 | 5 | 7 | 5 |
Drone 3 | 5 | 5 | 5 | 5 | 7 | 8 | 5 | 8 | 5 | 6 |
Drone 4 | 5 | 6 | 7 | 3 | 5 | 8 | 6 | 8 | 6 | 5 |
Drone 5 | 6 | 6 | 7 | 8 | 5 | 5 | 4 | 5 | 6 | 8 |
Drone 6 | 5 | 6 | 7 | 5 | 6 | 8 | 6 | 8 | 5 | 6 |
Drone 7 | 6 | 6 | 6 | 6 | 6 | 5 | 8 | 7 | 7 | 5 |
Drone 8 | 5 | 8 | 6 | 4 | 8 | 7 | 5 | 6 | 4 | 5 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
Expert 10 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 |
Drone 1 | 4 | 5 | 5 | 3 | 5 | 5 | 6 | 6 | 7 | 6 |
Drone 2 | 5 | 5 | 4 | 3 | 5 | 4 | 5 | 4 | 6 | 6 |
Drone 3 | 4 | 4 | 4 | 4 | 4 | 7 | 4 | 7 | 4 | 5 |
Drone 4 | 5 | 5 | 6 | 2 | 5 | 7 | 5 | 7 | 5 | 4 |
Drone 5 | 5 | 6 | 6 | 7 | 4 | 6 | 4 | 4 | 5 | 7 |
Drone 6 | 4 | 4 | 6 | 4 | 4 | 7 | 5 | 7 | 4 | 5 |
Drone 7 | 6 | 5 | 6 | 5 | 5 | 4 | 7 | 6 | 6 | 6 |
Drone 8 | 5 | 7 | 5 | 3 | 7 | 6 | 4 | 5 | 3 | 5 |
Rank | ||||||
---|---|---|---|---|---|---|
Drone 1 | 0.819 | 1.245 | 0.562 | 0.370 | 0.592 | 6 |
Drone 2 | 0.777 | 1.181 | 0.533 | 0.351 | 0.525 | 8 |
Drone 3 | 0.817 | 1.242 | 0.560 | 0.369 | 0.589 | 7 |
Drone 4 | 0.871 | 1.324 | 0.597 | 0.393 | 0.682 | 2 |
Drone 5 | 0.879 | 1.337 | 0.603 | 0.397 | 0.697 | 1 |
Drone 6 | 0.841 | 1.278 | 0.577 | 0.379 | 0.629 | 5 |
Drone 7 | 0.854 | 1.299 | 0.586 | 0.386 | 0.653 | 4 |
Drone 8 | 0.868 | 1.319 | 0.595 | 0.392 | 0.676 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puška, A.; Nedeljković, M.; Štilić, A.; Božanić, D. Evaluation of Affordable Agricultural Drones for Small and Medium Farms. Eng 2024, 5, 3161-3173. https://doi.org/10.3390/eng5040166
Puška A, Nedeljković M, Štilić A, Božanić D. Evaluation of Affordable Agricultural Drones for Small and Medium Farms. Eng. 2024; 5(4):3161-3173. https://doi.org/10.3390/eng5040166
Chicago/Turabian StylePuška, Adis, Miroslav Nedeljković, Anđelka Štilić, and Darko Božanić. 2024. "Evaluation of Affordable Agricultural Drones for Small and Medium Farms" Eng 5, no. 4: 3161-3173. https://doi.org/10.3390/eng5040166
APA StylePuška, A., Nedeljković, M., Štilić, A., & Božanić, D. (2024). Evaluation of Affordable Agricultural Drones for Small and Medium Farms. Eng, 5(4), 3161-3173. https://doi.org/10.3390/eng5040166