Fuzzy-Based Decision Support for Strategic Management: Evaluating Electric Vehicle Attractiveness in the Digital Era
Abstract
:1. Introduction
2. Literature Review and Conceptual Framework
2.1. Electric Vehicle Adoption: Key Drivers and Challenges
2.2. Fuzzy Sets in Strategic Multi-Criteria Decision-Making
2.3. Conceptual Framework
3. Methodology
- Fuzzy set-based model follows structured process explained in Section 2.3.
- Definition of Alternatives and Criteria—Selection of EVs and conventional vehicles along with relevant decision factors.
- Fuzzification of Input Data—Conversion of deterministic values into TFNs to account for uncertainty.
- Weight Assignment—Criteria are weighted based on relative importance.
- Fuzzy Decision Matrix—Structuring of fuzzy values into decision matrix.
- Fuzzy TOPSIS Computation—Calculation of ideal and anti-ideal solutions based on fuzzy distances.
- Defuzzification and Ranking—Conversion of fuzzy results into crisp values for final decision-making.
4. Case Study and Results
4.1. Input Data
4.2. Input Variables
4.2.1. Global Cost (GC)
4.2.2. Energy/Fuel Consumption (EFC)
4.2.3. CO2 Emissions (CO)
4.2.4. Maintenance Cost (MC)
4.2.5. Depreciation (D)
4.2.6. Energy Independence Index (EI)
4.3. Input Variable Fuzzification
- b: original value (most likely estimate).
- a: lower bound (optimistic scenario for cost criteria and pessimistic scenario for benefit criteria).
- c: upper bound (pessimistic scenario for cost criteria and optimistic scenario for benefit criteria).
4.4. Definition of Criteria Weights
4.5. Output Variable
- Ai represents the final output variable, indicating how close each alternative is to the ideal solution.
4.6. Results
4.7. Sensitivity Analysis
5. Discussion
5.1. Comparison with Previous Studies
5.2. Interpretation of Findings (Main Case Study)
5.3. Implications for Strategic Management
5.4. Practical Implications
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonal, V.S.; Bagi, S.M.; Koluragi, V.V.; Kadi, P. Electric Vehicles in India: Unlocking Opportunities, Overcoming Challenges and Strategic Recommendations. In Proceedings of the 2024 International Conference on Innovation and Novelty in Engineering and Technology (INNOVA), Vijayapura, India, 20–21 December 2024; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Ziemba, P. Selection of Electric Vehicles for the Needs of Sustainable Transport under Conditions of Uncertainty—A Comparative Study on Fuzzy MCDA Methods. Energies 2021, 14, 7786. [Google Scholar] [CrossRef]
- Chaudhari, D.S. Comprehensive analysis of the environmental impact of Electric Vehicles (EVs). World J. Adv. Eng. Technol. Sci. 2024, 13, 663–670. [Google Scholar] [CrossRef]
- Bigerna, S.; Micheli, S. Attitudes Toward Electric Vehicles: The Case of Perugia Using a Fuzzy Set Analysis. Sustainability 2018, 10, 3999. [Google Scholar] [CrossRef]
- Samawi, G.A.; Bwaliez, O.M.; Jreissat, M.; Kandas, A. Advancing Sustainable Development in Jordan: A Business and Economic Analysis of Electric Vehicle Adoption in the Transportation Sector. World Electr. Veh. J. 2025, 16, 45. [Google Scholar] [CrossRef]
- Javadnejad, F.; Jahanbakh, M.; Pinto, C.A.; Saeidi, A.A. Exploring the Complex Landscape of Electric Vehicle Adoption: Understanding Incentives and Overcoming Barriers for Sustainable Transportation in the US. Preprint 2023. [Google Scholar] [CrossRef]
- Ye, Q. Extended DEMATEL method with intuitionistic fuzzy information: A case of electric vehicles. PLoS ONE 2024, 19, e0314650. [Google Scholar] [CrossRef]
- Coşkun, M.Z.; Karakaya, B. A case study: Fuzzy logic-based decision-making system for electric vehicle charging. Int. J. Energy Smart Grid 2024, 9, 42–50. [Google Scholar] [CrossRef]
- Kanmaz, A.K.; Ertuğrul, İ. Fuzzy PIPRECIA and CRADIS integrated method in electric vehicle selection. Pamukkale J. Eurasian Socioecon. Stud. 2024. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, pp. 58–191. [Google Scholar] [CrossRef]
- Chen-Tung, C. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Özlü, L.D.; Çelebi, D. Electrifying Freight: Modeling the Decision-Making Process for Battery Electric Truck Procurement. Sustainability 2024, 16, 3801. [Google Scholar] [CrossRef]
- Golui, S.; Mahapatra, B.S.; Mahapatra, G.S. A new correlation-based measure on Fermatean fuzzy applied on multi-criteria decision making for electric vehicle selection. Expert Syst. Appl. 2023, 237, 121605. [Google Scholar] [CrossRef]
- Poongothai, P.; Abdur Rahman, B.; Nandakumar, C.D.; Ponnusamy, R. Decision-Making for Electric Vehicle Selection Using AHP-MABAC-Fuzzy Integration. In Proceedings of the 2023 International Conference on Data Science, Agents & Artificial Intelligence, ICDSAAI, Chennai, India, 21–23 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Sachan, S.; Mortka, M.Z. Fuzzy Logic Triggered Charging Infrastructures for Electric Vehicles. In Proceedings of the 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control, STPEC, Nagpur, India, 25–26 September 2020. [Google Scholar] [CrossRef]
- Chen, L.; Chen, B. Fuzzy Logic-Based Electric Vehicle Charging Management Considering Charging Urgency. In Proceedings of the IEEE Innovative Smart Grid Technologies-Asia, Chengdu, China, 21–24 May 2019; pp. 3441–3446. [Google Scholar] [CrossRef]
- Odkhuu, N.; Ahmed, M.A.; Kim, Y.-C. Priority Determination Based on Fuzzy Logic for Charging Electric Vehicles. In Proceedings of the International Conference on Ubiquitous and Future Networks, Zagreb, Croatia, 2–5 July 2019; pp. 295–299. [Google Scholar] [CrossRef]
- Auer, M. Analyzing the Factors Influencing the Electric Vehicle Selection Using Fuzzy AHP and TOP-SIS-SAW-COPRAS-ELECTRE Framework. In Recent Advances in Manufacturing and Thermal Engineering; Advances in Decision Sciences; Springer: Singapore, 2023; pp. 71–94. [Google Scholar] [CrossRef]
- Baygi, M.; Emam, S.R. Using the Fuzzy AHP Methodology in Customer’s Purchasing Decision-Making Process Based on Marketing Mix 4Ps. J. Math. Comput. Sci. 2011, 2, 619–630. [Google Scholar] [CrossRef]
- Purwanto, E.; Irawan, A.P. The Willingness to Purchase Electric Vehicles: A Comprehensive Review. IOP Conf. Ser. Earth Environ. Sci. 2024, 1324, 012091. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.; Puška, A.; Stevic, Z.; Alrasheedi, A.F. Multi-Criteria Selection of Electric Delivery Vehicles Using Fuzzy–Rough Methods. Sustainability 2023, 15, 15541. [Google Scholar] [CrossRef]
- Sripad, S.; Viswanathan, V. Quantifying the Economic Case for Electric Semi-Trucks. ACS Energy Lett. 2018, 4, 149–155. [Google Scholar] [CrossRef]
- Aysan, S.Y.; Eti, S.; Dinçer, H.; Akin, M.S.; Kalkavan, H.; Mikhaylov, A. A Unified Theory of Acceptance and Use of Technology and Fuzzy Artificial Intelligence Model for Electric Vehicle Demand Analysis. Decis. Anal. J. 2024, 11, 100455. [Google Scholar] [CrossRef]
- Michael, L.K.; Sriram, K.V.; Hungund, S.; Fernandes, M. Factors Influencing Adoption of Electric Vehicles—A Case in India. Cogent Eng. 2022, 9, 2085375. [Google Scholar] [CrossRef]
- Mundaplackal, R.J. What Factors Influence Individual Buyers’ Decisions to Adopt Electric Vehicles (EV) in New Zealand, and to What Extent Do These Factors Contribute to the Current State of EV Uptake? Master’s Thesis, Otago Polytechnic Dunedin Campus, Dunedin, New Zealand, 2024. [Google Scholar] [CrossRef]
- Ling, Z.; Cherry, C.R.; Wen, Y. Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China. Sustainability 2021, 13, 11719. [Google Scholar] [CrossRef]
- Koniak, M.; Jaśkowskí, P.; Tomczuk, K. Review of Economic, Technical and Environmental Aspects of Electric Vehicles. Sustainability 2024, 16, 9849. [Google Scholar] [CrossRef]
- Machado, P.G.; Teixeira, A.C.R.; Santos, E.M.d.; Mouette, D. Electric Vehicles Adoption: A Systematic Review (2016–2020). Wiley Interdiscip. Rev. Energy Environ. 2023, 12, e477. [Google Scholar] [CrossRef]
- Imran, S.; Rameshan, N.; Anand, M.C.J.; Martin, N.; Tiwari, M.; Mohan, V. Fuzzy Decision-Making on Strategies for Maximizing the Utility of Electric Vehicles. In Proceedings of the 2024 IEEE Third International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES, Delhi, India, 26–28 April 2024; Volume 1, pp. 347–352. [Google Scholar] [CrossRef]
- Lazaroiu, G.C.; Roscia, M. Fuzzy Logic Strategy for Priority Control of Electric Vehicle Charging. IEEE Trans. Intell. Transp. Syst. 2022, 23, 3161398. [Google Scholar] [CrossRef]
- Bressane, A.; Garcia, A.; Muhammad, R.; Xerfan, S.D.; Ruas, G.; Negri, R.G. Fuzzy Machine Learning Applications in Environmental Engineering: Does the Ability to Deal with Uncertainty Really Matter? Sustainability 2024, 16, 4525. [Google Scholar] [CrossRef]
- Anderhofstadt, B.; Spinler, S. Factors Affecting the Purchasing Decision and Operation of Alternative Fuel-Powered Heavy-Duty Trucks in Germany—A Delphi Study. Transp. Res. Part D Transp. Environ. 2019, 73, 87–107. [Google Scholar] [CrossRef]
- Lau, Y.H. Comparative Analysis of Gasoline and Electric Vehicles: Economic, Environmental, and Consumer Perspectives. Financ. Econ. 2024, 1, 1–5. [Google Scholar] [CrossRef]
- Çakır, E.; Demircioglu, E. Multi-Criteria Evaluation of Battery Electric Vehicles via Circular Intuitionistic Fuzzy PROMETHEE. In Proceedings of the 2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics, SACI, Timisoara, Romania, 23–25 May 2024; Volume 1, pp. 000151–000156. [Google Scholar] [CrossRef]
- Biswas, S.; Sanyal, A.; Boanić, D.; Kar, S.; Milić, A.; Puška, A. A Multicriteria-Based Comparison of Electric Vehicles Using q-Rung Orthopair Fuzzy Numbers. Entropy 2023, 25, 905. [Google Scholar] [CrossRef]
- Suri, G.; Gandotra, N.; Guleria, A.; Saini, N. Novel Distance Measure for q-Rung Orthopair Fuzzy Sets and Its Application. Int. J. Knowl.-Based Intell. Eng. Syst. 2025. [Google Scholar] [CrossRef]
- Biswas, T.K.; Das, M.C. Selection of Commercially Available Electric Vehicles Using Fuzzy AHP-MABAC. J. Inst. Eng. Ser. C 2019, 100, 531–537. [Google Scholar] [CrossRef]
- Bu, Y. Fuzzy Decision Support System for Financial Planning and Management. Informatica 2024, 48, 113–126. [Google Scholar] [CrossRef]
- Babu, C.V.S.; Bhavana, K.R.; Samnatha, M. Fuzzy Logic in Multi-Criteria Decision Making. In Advances in Computational Intelligence and Robotics; IGI Global: Hershey, PA, USA, 2024; pp. 399–424. [Google Scholar] [CrossRef]
- Hsiao, S.-W.; Su, K.-Y. Application of Fuzzy Logic in Decision-Making for Product Concept Design. In Proceedings of the 2024 IEEE 7th Eurasian Conference on Educational Innovation, ECEI, Bangkok, Thailand, 26–28 January 2024; pp. 81–86. [Google Scholar] [CrossRef]
- Chowdhury, R.H. Digital Business Transformation and Its Role in Boosting U.S. Competitiveness. World J. Adv. Eng. Technol. Sci. 2024, 13, 311–323. [Google Scholar] [CrossRef]
- Parmentier, G.; Gandia, R. Digital Technologies and Strategic Transformation. In Strategy and Business Models in the Digital Age; Springer: Berlin/Heidelberg, Germany, 2025; pp. 78–92. [Google Scholar] [CrossRef]
- Vărzaru, A.A.; Bocean, C.G. Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation. Systems 2024, 12, 359. [Google Scholar] [CrossRef]
- Siddula, S.; Yashwanth, V.; Vungarala, C.K.; Pathi, R.; Vadlakonda, B. Hybrid Electric Vehicle Energy Management Systems Using Fuzzy Controller. In Proceedings of the 2024 IEEE International Conference on Computing, Power and Communication Technologies, IC2PCT, Greater Noida, India, 9–10 February 2024; Volume 5, pp. 955–959. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Krohling, R.A.; Campanharo, V.C. Fuzzy TOPSIS for Group Decision Making: A Case Study for Accidents with Oil Spill in the Sea. Expert Syst. Appl. 2011, 38, 4190–4197. [Google Scholar] [CrossRef]
- Tavakkoli-Moghaddam, R.; Gitinavard, H.; Mousavi, S.M.; Siadat, A. An Interval-Valued Hesitant Fuzzy TOPSIS Method to Determine the Criteria Weights. In Outlooks and Insights on Group Decision and Negotiation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 157–169. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X. Multi-Attribute Decision-Making Method Based on Interval Intuitionistic Trapezoidal Fuzzy Number to Determine the Expert Weight. In Proceedings of the 2022 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, ISPA-BDCloud-SocialCom-SustainCom, Melbourne, Australia, 17–19 December 2022; pp. 33–39. [Google Scholar] [CrossRef]
- Gupta, P.; Mehlawat, M.K.; Grover, N. A Generalized TOPSIS Method for Intuitionistic Fuzzy Multiple Attribute Group Decision Making Considering Different Scenarios of Attributes Weight Information. Int. J. Fuzzy Syst. 2019, 21, 369–387. [Google Scholar] [CrossRef]
- Du, X.; Lu, K.; Zhou, R.; Lv, Y.; Qiu, S.M. A Weighting Method Based on the Improved Hesitation of Pythagorean Fuzzy Sets. Electronics 2023, 12, 3001. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, W.; Chang, W. An Improved TOPSIS with Weighted Hesitant Vague Information. Chaos Solitons Fractals 2016, 89, 47–53. [Google Scholar] [CrossRef]
- Wang, P.W.; Lin, Y.; Wang, Z. An Integrated Multi-Criteria Group Decision-Making Model Applying Fuzzy TOPSIS-CRITIC Method with Unknown Weight Information. Int. J. Innov. Comput. Inf. Control 2022, 18, 815–836. [Google Scholar]
- Vigneshwaran, A.; Kumar, K.A.N. Electric Vehicles and Their Types. In Artificial Intelligence Applications in Battery Management Systems and Routing Problems in Electric Vehicles; Angalaeswari, S., Deepa, T., Kumar, L., Eds.; IGI Global: Hershey, PA, USA, 2023; pp. 92–108. [Google Scholar] [CrossRef]
- AlZohbi, G. An Overview on Electric Vehicles. In Handbook of Electric Vehicles; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–20. [Google Scholar] [CrossRef]
- Halim, A.A.E.B.A.E.; Bayoumi, E.H.E.; El-Khattam, W.; Ibrahim, A.M. Electric Vehicles: A Review of Their Components and Technologies. Int. J. Power Electron. Drive Syst. 2022, 13, 2041–2061. [Google Scholar] [CrossRef]
- Sekhar, C.C.; Chandrakar, N.; Prakash, J.; Sugali, H. An overview of hybrid electric vehicles. In Advanced Technologies in Electric Vehicles; Elsevier BV: Amsterdam, The Netherlands, 2024; pp. 3–56. [Google Scholar] [CrossRef]
- Gouveia, S.; de la Iglesia, D.H.; Abrantes, J.L.; López Rivero, A.J.; Silva, E.; Gouveia, E.; Santos, V. Creating Value Through Strategic Management: Sustainable Mobility for Family-Owned Small- and Medium-Sized Enterprises with Electric Vehicles in the Digital Era. Sustainability 2025, 17, 1785. [Google Scholar] [CrossRef]
- International Energy Agency. CO2 Emissions from Fuel Combustion 2016: Part III: Total Greenhouse Gas Emissions; Organisation for Economic Co-Operation and Development (OECD): Paris, France, 2016.
- Weller, K.; Lipp, S.; Röck, M.; Matzer, C.; Bittermann, A.; Hausberger, S. Real World Fuel Consumption and Emissions from LDVs and HDVs. Front. Mech. Eng. 2019, 5, 45. [Google Scholar] [CrossRef]
- Hamels, S.; Himpe, E.; Laverge, J.; Delghust, M.; Van den Brande, K.; Janssens, A.; Albrecht, J. The Use of Primary Energy Factors and CO₂ Intensities for Electricity in the European Context—A Systematic Methodological Review and Critical Evaluation of the Contemporary Literature. Renew. Sustain. Energy Rev. 2021, 146, 111182. [Google Scholar] [CrossRef]
- Yildiz, B. Assessment of EV Adoption Perspectives: A High-Level Analysis of STEEP Perspectives. In Proceedings of the 2024 Portland International Conference on Management of Engineering and Technology, PICMET, Portland, OR, USA, 4–8 August 2024; pp. 1–16. [Google Scholar] [CrossRef]
- Dua, R.; Guzman, A.F. A Perspective on Emerging Energy Policy and Economic Research Agenda for Enabling Aviation Climate Action. Energy Res. Soc. Sci. 2024, 117, 103725. [Google Scholar] [CrossRef]
- Govindan, K.; Kannan, D.; Jørgensen, T.B.; Nielsen, T.S. Supply Chain 4.0 Performance Measurement: A Systematic Literature Review, Framework Development, and Empirical Evidence. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102725. [Google Scholar] [CrossRef]
- Hanea, A.M.; McBride, M.F.; Burgman, M.A.; Wintle, B.C. The Value of Performance Weights and Discussion in Aggregated Expert Judgments. Risk Anal. 2018, 38, 1781–1794. [Google Scholar] [CrossRef]
- Aly, S.; Vrana, I. Evaluating the Knowledge, Relevance and Experience of Expert Decision Makers Utilizing the Fuzzy-AHP. Agric. Econ. 2008, 54, 529–535. [Google Scholar] [CrossRef]
- Wei, F. Determination of Expert’s Weight in Comprehensive Evaluation. Ind. Eng. J. 2006. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-GDJX200605006.htm (accessed on 19 March 2025).
- Baraldi, P.; Librizzi, M.; Zio, E.; Podofillini, L.; Dang, V.N. Two Techniques of Sensitivity and Uncertainty Analysis of Fuzzy Expert Systems. Expert Syst. Appl. 2009, 36, 12461–12471. [Google Scholar] [CrossRef]
- Kaymak, U.; van Nauta Lemke, H.R.; den Boer, T. A Sensitivity-Based Analysis of Weighted Fuzzy Aggregation. In Proceedings of the 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; Volume 1, pp. 755–760. [Google Scholar] [CrossRef]
Parameter | Pure EV (Without Solar) | Pure EV (With Solar) | Hybrid EV | Diesel | Gasoline |
---|---|---|---|---|---|
Vehicle Price (EUR) | EUR 40,000 | EUR 40,000 | EUR 30,000 | EUR 26,000 | EUR 25,000 |
Wall Box Cost (EUR) | EUR 800 | EUR 800 | EUR 800 | N/A | N/A |
Wall Box Installation Cost (EUR) | EUR 100 | EUR 100 | EUR 100 | N/A | N/A |
Solar Panel System Cost (EUR) | N/A | EUR 5000 | N/A | N/A | N/A |
Battery Storage System Cost (EUR) | N/A | EUR 2000 | N/A | N/A | N/A |
Electricity Consumption (kWh/100 km) | 21 kWh/100 km | 21 kWh/100 km | 10 kWh/100 km | N/A | N/A |
Daily Distance (km/day) | 100 km/day | 100 km/day | 100 km/day | 100 km/day | 100 km/day |
Electricity Price (EUR per kWh) | EUR 0.18/kWh | N/A (Covered by Solar) | EUR 0.18/kWh | N/A | N/A |
Fuel Consumption (liters/100 km) | N/A | N/A | 500 L (5 L/100 km) | 2920 L (8 L/100 km) | 4015 L (11 L/100 km) |
Fuel Price (EUR per liter) | N/A | N/A | EUR 1.80/liter | EUR 1.80/liter | EUR 1.80/liter |
Maintenance Cost (EUR per year) | EUR 400/year | EUR 400/year + Solar and Battery Maintenance (EUR 100/year) | EUR 800/year | EUR 1000/year | EUR 1000/year |
Vehicle Depreciation Rate (per year) | 10% | 10% | 10% | 15% | 15% |
Variable | Symbol | Unit | Description |
---|---|---|---|
Global Cost | GC | EUR | Total vehicle acquisition cost, including infrastructure. |
Energy/Fuel Consumption | EFC | kWh/100 km, L/100 | Energy/fuel used per 100 km. |
CO2 Emissions | CO | g CO2/km | Environmental impact in CO2 emissions. |
Maintenance Cost | MC | EUR per year | Annual maintenance expenses. |
Depreciation | D | % per year | Annual vehicle value loss. |
Energy Independence Index | EI | % | Dependence on renewable energy. |
Parameter | Pure EV (Without Solar) | Pure EV (With Solar) | Hybrid EV | Diesel | Gasoline |
---|---|---|---|---|---|
Annual Fuel Consumption (liters) | N/A | N/A | 1460 | 2920 | 4015 |
Annual Electricity Consumption (kWh) | 7665 | 7665 | 3650 | N/A | N/A |
Conversion Factor KgCO2/liters (diesel/gasoline) | N/A | N/A | 2.68 | 2.68 | 2.31 |
Conversion Factor KgCO2/kWh | 0.4 | N/A (solar covered) | 0.4 | N/A | N/A |
Estimated Annual Emissions (kgCO2) | 3586.0 | N/A (solar covered) | 6598.6 | 7825.6 | 9274.7 |
Variable (Symbol, Unit) | Pure EV (Without Solar) Solar) | Pure EV (With Solar) | Hybrid EV | Diesel | Gasoline |
---|---|---|---|---|---|
Global Cost (GC, EUR) | 40,900 | 47,900 | 30,600 | 26,000 | 25,000 |
Energy/Fuel Consumption (EFC, EUR) | 1379.7 | 0.0 | 3285.0 | 5256.0 | 7227.0 |
CO2 Emissions (CO, g CO2/km) | 3066.0 | 0.0 | 5372.8 | 7825.6 | 9274.7 |
Maintenance Cost (MC, EUR per year) | 400.0 | 500.0 | 800.0 | 1000.0 | 1000.0 |
Depreciation (D, EUR per year) | 4000.0 | 4000.0 | 3000.0 | 3900.0 | 3750.0 |
Energy Independence Index (EI, %) | 50 | 100 | 30 | 0 | 0 |
Variable (Symbol, Unit) | Pure EV (Without Solar) | Pure EV (With Solar) | Hybrid EV | Diesel | Gasoline |
---|---|---|---|---|---|
Global Cost (GC, EUR) | (36,810.0, 40,900.0, 44,990.0) | (43,110.0, 47,900.0, 52,690.0) | (27,540.0, 30,600.0, 33,660.0) | (23,400.0, 26,000.0, 28,600.0) | (22,500.0, 25,000.0, 27,500.0) |
Energy/Fuel Consumption (EFC, EUR) | (1241.7, 1379.7, 1517.7) | (0.0, 0.0, 0.0) | (2956.5, 3285.0, 3613.5) | (4730.4, 5256.0, 5781.6) | (6504.3, 7227.0, 7949.7) |
CO2 Emissions (CO, g CO2/km) | (2759.4, 3066.0, 3372.6) | (0.0, 0.0, 0.0) | (4835.5, 5372.8, 5910.1) | (7043.0, 7825.6, 8608.16) | (8347.2, 9274.7, 10202.2) |
Maintenance Cost (MC, EUR per year) | (360.0, 400.0, 440.0) | (450.0, 500.0, 550.0) | (720.0, 800.0, 880.0) | (900.0, 1000.0, 1100.0) | (900.0, 1000.0, 1100.0) |
Residual Value (RV, EUR) | (3600.0, 4000.0, 4400.0) | (3600.0, 4000.0, 4400.0) | (2700.0, 3000.0, 3300.0) | (3510.0, 3900.0, 4290.0) | (3375.0, 3750.0, 4125.0) |
Energy Independence Index (EI, %) | (45.0, 50.0, 55.0) | (90.0, 100.0, 110.0) | (27.0, 30.0, 33.0) | (0.0, 0.0, 0.0) | (0.0, 0.0, 0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, S.; de la Iglesia, D.H.; Abrantes, J.L.; López Rivero, A.J.; Gouveia, E. Fuzzy-Based Decision Support for Strategic Management: Evaluating Electric Vehicle Attractiveness in the Digital Era. Eng 2025, 6, 86. https://doi.org/10.3390/eng6050086
Gouveia S, de la Iglesia DH, Abrantes JL, López Rivero AJ, Gouveia E. Fuzzy-Based Decision Support for Strategic Management: Evaluating Electric Vehicle Attractiveness in the Digital Era. Eng. 2025; 6(5):86. https://doi.org/10.3390/eng6050086
Chicago/Turabian StyleGouveia, Sónia, Daniel H. de la Iglesia, José Luís Abrantes, Alfonso J. López Rivero, and Eduardo Gouveia. 2025. "Fuzzy-Based Decision Support for Strategic Management: Evaluating Electric Vehicle Attractiveness in the Digital Era" Eng 6, no. 5: 86. https://doi.org/10.3390/eng6050086
APA StyleGouveia, S., de la Iglesia, D. H., Abrantes, J. L., López Rivero, A. J., & Gouveia, E. (2025). Fuzzy-Based Decision Support for Strategic Management: Evaluating Electric Vehicle Attractiveness in the Digital Era. Eng, 6(5), 86. https://doi.org/10.3390/eng6050086