Previous Issue
Volume 6, August
 
 

Eng, Volume 6, Issue 9 (September 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
24 pages, 43348 KiB  
Article
Post-Fabrication Lamination with PP and PET Films for Improved Mechanical Performance of Injection-Molded Wood Fiber/PP Composites
by Wycliffe Ondiek, Arnaud Macadre and Koichi Goda
Eng 2025, 6(9), 204; https://doi.org/10.3390/eng6090204 - 22 Aug 2025
Abstract
This study investigates the effect of polymer film lamination on the tensile performance of wood fiber-reinforced polypropylene (WP) composites. Neat polypropylene (PP) and WP containing 25 wt% wood fiber were injection-molded and laminated with 0.1 mm PP or polyethylene terephthalate (PET) films using [...] Read more.
This study investigates the effect of polymer film lamination on the tensile performance of wood fiber-reinforced polypropylene (WP) composites. Neat polypropylene (PP) and WP containing 25 wt% wood fiber were injection-molded and laminated with 0.1 mm PP or polyethylene terephthalate (PET) films using a compatible adhesive. Four configurations were examined: unlaminated (0S), single-sided half-length (1S-H), single-sided full-length (1S-F), and double-sided full-length (2S-F). Mechanical properties and fracture morphology were characterized by uniaxial tensile tests and scanning electron microscopy (SEM), alongside measurements of surface roughness. PET lamination produced the greatest strength enhancements, with 2S-F specimens achieving gains of 12% for PP and 21% for WP, whereas PP lamination gave minimal or negative effects, except for a 5% increase in WP. Strength improvements were attributed to surface smoothing and suppression of crack initiation, as confirmed by roughness measurements and SEM observations. PET’s higher stiffness and strength accounted for its superior reinforcement relative to PP. Fractographic analysis revealed flat regions near specimen corners—interpreted as crack initiation sites—indicating that lamination delayed crack propagation. The results demonstrate that PET film lamination is an effective and practical post-processing strategy for enhancing the mechanical performance of wood–plastic composites. Full article
(This article belongs to the Topic Surface Engineering and Micro Additive Manufacturing)
Show Figures

Figure 1

Previous Issue
Back to TopTop