Graft Copolymers of Carboxymethyl Cellulose and Poly(N-vinylimidazole) as Promising Carriers for Metronidazole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of the Na-CMC-g-PVI Copolymers
2.3. FTIR-ATR Spectroscopy
2.4. TGA/DSC
2.5. XRD
2.6. Metronidazole Loading and Encapsulation Efficiency
2.7. Release Experiments
2.8. Release Modeling
3. Results and Discussion
3.1. Na-CMC-g-PVI Copolymer Loading and Interactions with Metronidazole
3.2. Investigating Metronidazole Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.S.; Hasan, M.S.; Nitai, A.S.; Nam, S.; Karmakar, A.K.; Ahsan, M.S.; Shiddiky, M.J.A.; Ahmed, M.B. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, M.S.; Mondal, M.I.H. Synthesis of Highly Substituted Carboxymethyl Cellulose Depending on Cellulose Particle Size. Int. J. Biol. Macromol. 2015, 80, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.M.; Fabiano, A.; Sartini, S.; Zambito, Y.; Braccini, S.; Chiellini, F.; Cataldi, A.G.; Bartoli, F.; de la Fuente, A.; Erba, P.A. Erba pH-Responsive Carboxymethylcellulose Nanoparticles for 68Ga-WBC Labeling in PET Imaging. Polymers 2019, 11, 1615. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.G.; Kim, H.W.; Kim, B.R.; Kim, Y.B.; Rhee, Y.H. Biocompatibility and Antimicrobial Activity of Poly(3-Hydroxyoctanoate) Grafted with Vinylimidazole. Int. J. Biol. Macromol. 2012, 50, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Fodor, C.; Bozi, J.; Blazsó, M.; Iván, B. Thermal Behavior, Stability, and Decomposition Mechanism of Poly(N-Vinylimidazole). Macromolecules 2012, 45, 8953–8960. [Google Scholar] [CrossRef]
- Horta, A.; Molina, M.J.; Gómez-Antón, M.R.; Piérola, I.F. The pH Inside a pH-Sensitive Gel Swollen in Aqueous Salt Solutions: Poly(N-Vinylimidazole). Macromolecules 2009, 42, 1285–1292. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, W.; Yang, X.; Li, Y. Efficient Removal of Heavy Metal Ions from Aqueous Solution by a Novel Poly (1-Vinylimidazole) Chelate Resin. Polym. Bull. 2019, 76, 1081–1097. [Google Scholar] [CrossRef]
- Ghaffari Khaligh, N. Poly(N-Vinylimidazole) as an Efficient Catalyst for Acetylation of Alcohols, Phenols, Thiols and Amines under Solvent-Free Conditions. RSC Adv. 2013, 3, 99–110. [Google Scholar] [CrossRef]
- Tirtom, V.N.; Dinçer, A. Effective Removal of Heavy Metals from an Aqueous Solution with Poly(N-Vinylimidazole-Acrylamide) Hydrogels. Sep. Sci. Technol. 2021, 56, 912–924. [Google Scholar] [CrossRef]
- Dorraj, M.; Sadjadi, S.; Heravi, M.M. Pd on Poly(1-Vinylimidazole) Decorated Magnetic S-Doped Grafitic Carbon Nitride: An Efficient Catalyst for Catalytic Reduction of Organic Dyes. Sci. Rep. 2020, 10, 13440. [Google Scholar] [CrossRef]
- Gorjian, H.; Fahim, H.; Khaligh, N.G. Poly(N-Vinylimidazole): A Biocompatible and Biodegradable Functional Polymer, Metal-Free, and Highly Recyclable Heterogeneous Catalyst for the Mechanochemical Synthesis of Oximes. Turk. J. Chem. 2021, 45, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Wang, Z.; Wang, J.; Wang, S. Biomimetic Material—Poly(N-Vinylimidazole)–Zinc Complex for CO2 Separation. Chem. Commun. 2012, 48, 1766. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zhang, P.-B.; Zhao, Y.-F.; Zhu, L.-P.; Zhu, B.-K.; Xu, Y.-Y. Preparation and Characterization of Poly (N-Vinyl Imidazole) Gel-Filled Nanofiltration Membranes. J. Membr. Sci. 2015, 492, 380–391. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A. Radiation-Induced Graft Copolymerization of N-vinyl Imidazole onto Moringa Gum Polysaccharide for Making Hydrogels for Biomedical Applications. Int. J. Biol. Macromol. 2018, 120, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- López-Saucedo, F.; López-Barriguete, J.E.; Flores-Rojas, G.G.; Gómez-Dorantes, S.; Bucio, E. Polypropylene Graft Poly(Methyl Methacrylate) Graft Poly(N-Vinylimidazole) as a Smart Material for pH-Controlled Drug Delivery. Int. J. Mol. Sci. 2021, 23, 304. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.V.; Olshannikova, S.S.; Lavlinskaya, M.S.; Holyavka, M.G.; Faizullin, D.A.; Zuev, Y.F.; Artukhov, V.G. Chitosan Graft Copolymers with N-Vinylimidazole as Promising Matrices for Immobilization of Bromelain, Ficin, and Papain. Polymers 2022, 14, 2279. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.A.; Sorokin, A.V.; Lavlinskaya, M.S.; Sinelnikov, A.A.; Bykovskiy, D.V. Graft Copolymers of Carboxymethyl Cellulose with N-Vinylimidazole: Synthesis and Application for Drug Delivery. Polym. Bull. 2019, 76, 4929–4949. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Goncharova, S.S.; Lavlinskaya, M.S.; Holyavka, M.G.; Faizullin, D.A.; Zuev, Y.F.; Kondratyev, M.S.; Artyukhov, V.G. Complexation of Bromelain, Ficin, and Papain with the Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Enhances Enzyme Proteolytic Activity. Int. J. Mol. Sci. 2023, 24, 11246. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.V.; Goncharova, S.S.; Lavlinskaya, M.S.; Holyavka, M.G.; Zuev, Y.F.; Faizullin, D.A.; Kondtatyev, M.S.; Artyukhov, V.G. Study of the Mechanism of Interaction of Ficin with a Graft Copolymer of Carboxymethyl Cellulose Sodium Salt and N-Vinylimidazole Using Molecular Docking, as Well as Infrared and Raman Spectroscopy. Biophysics 2023, 68, 182–189. [Google Scholar] [CrossRef]
- Löfmark, S.; Edlund, C.; Nord, C.E. Metronidazole Is Still the Drug of Choice for Treatment of Anaerobic Infections. Clin. Infect. Dis. 2010, 50, S16–S23. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, Y.; Li, X.; Yao, Z.; Ge, R. The Mechanisms of Metronidazole Resistance of Helicobacter Pylori: A Transcriptomic and Biochemical Study. Microbial. Pathog. 2023, 183, 106303. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Culkin, A.; Jones, D.S.; Andrews, G.P. Development of Polycaprolactone-Based Metronidazole Matrices for Intravaginal Extended Drug Delivery Using a Mechanochemically Prepared Therapeutic Deep Eutectic System. Int. J. Pharm. 2021, 593, 120071. [Google Scholar] [CrossRef] [PubMed]
- Mirzaeei, S.; Mansurian, M.; Asare-Addo, K.; Nokhodchi, A. Metronidazole- and Amoxicillin-Loaded PLGA and PCL Nanofibers as Potential Drug Delivery Systems for the Treatment of Periodontitis: In Vitro and In Vivo Evaluations. Biomedicines 2021, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Dabhi, M.R.; Sheth, N.R. Formulation Development of Physiological Environment Responsive Periodontal Drug Delivery System for Local Delviery of Metronidazole Benzoate. Drug Dev. Ind. Pharm. 2013, 39, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Steckiewicz, K.P.; Cieciórski, P.; Barcińska, E.; Jaśkiewicz, M.; Narajczyk, M.; Bauer, M.; Kamysz, W.; Megiel, E.; Inkielewicz-Stepniak, I. Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis. Int. J. Nanomed. 2022, 17, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Krishnaiah, Y.S.R.; Raju, P.V.; Kumar, B.D.; Jayaram, B.; Rama, B.; Raju, V.; Bhaskar, P. Pharmacokinetic Evaluation of Guar Gum-Based Colon-Targeted Oral Drug Delivery Systems of Metronidazole in Healthy Volunteers. Eur. J. Drug Metab. Pharmacokinet. 2003, 28, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Preisig, D.; Varum, F.; Bravo, R.; Hartig, C.; Spleiss, J.; Abbes, S.; Caobelli, F.; Wild, D.; Puchkov, M.; Huwyler, J.; et al. Colonic Delivery of Metronidazole-Loaded Capsules for Local Treatment of Bacterial Infections: A Clinical Pharmacoscintigraphy Study. Eur. J. Pharm. Biopharm. 2021, 165, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.; Adimoolam, S.; Qureshi, M.J. Development and Evaluation of Metronidazole Loaded Carbopol 934P Mucoadhesive Microcapsules for Sustained Drug Release at the Gastric Mucosa. J. Appl. Pharm. Sci. 2018, 8, 20–31. [Google Scholar] [CrossRef]
- Lin, T.; Qin, T.; Jiang, S.; Zhang, C.; Wang, L. Anti-Inflammatory and Anti-Biotic Drug Metronidazole Loaded ZIF-90 Nanoparticles as a pH Responsive Drug Delivery System for Improved Pediatric Sepsis Management. Microbial. Pathog. 2023, 176, 105941. [Google Scholar] [CrossRef]
- Kumar, G.; Chaudhary, K.; Mogha, N.K.; Kant, A.; Masram, D.T. Extended Release of Metronidazole Drug Using Chitosan/Graphene Oxide Bionanocomposite Beads as the Drug Carrier. ACS Omega 2021, 6, 20433–20444. [Google Scholar] [CrossRef]
- Gupta, K.C.; Sahoo, S.; Khandekar, K. Graft Copolymerization of Ethyl Acrylate onto Cellulose Using Ceric Ammonium Nitrate as Initiator in Aqueous Medium. Biomacromolecules 2002, 3, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Luo, C.; Gao, H.; Du, S.; Shi, J.; Wang, F. A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer. Int. J. Nanomed. 2021, 16, 3185–3199. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, R.; Sakai, K.; Okano, T.; Sakurai, Y. A New Model for Zero-Order Drug Release I. Hydrophobic Drug Release from Hydrophilic Polymeric Matrices. Polym. J. 1991, 23, 1111–1121. [Google Scholar] [CrossRef]
- Mulye, N.V.; Turco, S.J. A Simple Model Based on First Order Kinetics to Explain Release of Highly Water Soluble Drugs from Porous Dicalcium Phosphate Dihydrate Matrices. Drug Dev. Ind. Pharm. 1995, 21, 943–953. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Kumar Trivedi, M. Spectroscopic Characterization of Biofield Treated Metronidazole and Tinidazole. Med. Chem. 2015, 5, 340–344. [Google Scholar] [CrossRef]
- Drolet, D.P.; Manuta, D.M.; Lees, A.J.; Katnani, A.D.; Coyle, G.J. FT-IR and XPS Study of Copper(II) Complexes of Imidazole and Benzimidazole. Inorganica Chim. Acta 1988, 146, 173–180. [Google Scholar] [CrossRef]
- Sorokin, A.V.; Kuznetsov, V.A.; Lavlinskaya, M.S. Synthesis of Graft Copolymers of Carboxymethyl Cellulose and N,N-Dimethylaminoethyl Methacrylate and Their Study as Paclitaxel Carriers. Polym. Bull. 2021, 78, 2975–2992. [Google Scholar] [CrossRef]
- Fu, T.; Smith, S.; Camarasa-Gómez, M.; Yu, X.; Xue, J.; Nuckolls, C.; Evers, F.; Venkataraman, L.; Wei, S. Enhanced Coupling through π-Stacking in Imidazole-Based Molecular Junctions. Chem. Sci. 2019, 10, 9998–10002. [Google Scholar] [CrossRef]
- El-Sayed, S.; Mahmoud, K.H.; Fatah, A.A.; Hassen, A. DSC, TGA and Dielectric Properties of Carboxymethyl Cellulose/Polyvinyl Alcohol Blends. Phys. B Condens. Matter 2011, 406, 4068–4076. [Google Scholar] [CrossRef]
- Bayramgil, N.P. Thermal Degradation of [Poly(N-Vinylimidazole)–Polyacrylic Acid] Interpolymer Complexes. Polym. Degrad. Stab. 2008, 93, 1504–1509. [Google Scholar] [CrossRef]
- Gomes, A.P.B.; Correia, L.P.; Da Silva Simões, M.O.; Macêdo, R.O. Development of Thermogravimetric Method for Quantitative Determination of Metronidazole. J. Therm. Anal. Calorim. 2007, 88, 383–387. [Google Scholar] [CrossRef]
- Talu, M.; Demiroğlu, E.U.; Yurdakul, Ş.; Badoğlu, S. FTIR, Raman and NMR Spectroscopic and DFT Theoretical Studies on Poly(N-Vinylimidazole). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 134, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Özbaş, Z.; Özkahraman, B.; Bal Öztürk, A. Controlled Release Profile of 5-Fluorouracil Loaded P(AAM-Co-NVP-Co-DEAEMA) Microgel Prepared via Free Radical Precipitation Polymerization. Polym. Bull. 2018, 75, 3053–3067. [Google Scholar] [CrossRef]
- Llabot, J.M.; Manzo, R.H.; Allemandi, D.A. Drug Release from Carbomer:Carbomer Sodium Salt Matrices with Potential Use as Mucoadhesive Drug Delivery System. Int. J. Pharm. 2004, 276, 59–66. [Google Scholar] [CrossRef]
Polymer | n(Na-CMC)/n(VI), mol/mol | Mn of PVI | PVI, % | FG × 102 | LE, % | EE, μg × mg−1 |
---|---|---|---|---|---|---|
Na-CMC | - | - | - | - | 31 ± 2 | 310 ± 9 |
Na-CMC-g-PVI-1 | 1/10 | 15,690 | 86 | 6.05 | 57 ± 3 | 570 ± 13 |
Na-CMC-g-PVI-2 | 1/5 | 7690 | 64 | 4.12 | 69 ± 3 | 690 ± 14 |
Na-CMC-g-PVI-3 | 1/3 | 6190 | 41 | 2.08 | 42 ± 2 | 490 ± 11 |
No | Copolymer | Zero-Order Model | First-Order Model | Korsmeyer–Peppas Model | ||||
---|---|---|---|---|---|---|---|---|
R2 | k0, Hour−1 | R2 | k1, Hour−1 | R2 | kKP, Hour−1 | n | ||
Total release | ||||||||
1 | Na-CMC-g-PVI-1 | 0.43 | 1.4 ± 0.4 | 0.31 | 3.8 ± 0.2 | 0.76 | 0.2 ± 0.02 | 0.5 ± 0.1 |
2 | Na-CMC-g-PVI-2 | 0.56 | 1.8 ± 0.4 | 0.38 | 3.4 ± 0.2 | 0.83 | 0.1 ± 0.01 | 0.7 ± 0.1 |
3 | Na-CMC-g-PVI-3 | 0.65 | 1.8 ± 0.3 | 0.38 | 3.0 ± 0.3 | 0.83 | 0.06 ± 0.01 | 0.9 ± 0.1 |
Fast release | ||||||||
4 | Na-CMC-g-PVI-1 | 0.95 | 8.0 ± 0.6 | 0.78 | 0.2 ± 0.03 | 0.98 | 0.1 ± 0.01 | 0.9 ± 0.1 |
5 | Na-CMC-g-PVI-2 | 0.99 | 7.7 ± 0.1 | 0.83 | 0.2 ± 0.03 | 0.99 | 0.06 ± 0.003 | 1.1 ± 0.04 |
6 | Na-CMC-g-PVI-3 | 0.97 | 6.9 ± 0.2 | 0.79 | 0.3 ± 0.04 | 0.98 | 0.03 ± 0.001 | 1.4 ± 0.07 |
Slow release | ||||||||
7 | Na-CMC-g-PVI-1 | 0.72 | 0.1 ± 0.03 | 0.71 | (9 ± 3) × 10−4 | 0.76 | 0.9 ± 0.004 | 0.03 ± 0.01 |
8 | Na-CMC-g-PVI-2 | 0.78 | 0.1 ± 0.02 | 0.78 | (6 ± 2) × 10−4 | 0.84 | 0.9 ± 0.003 | 0.03 ± 0.004 |
9 | Na-CMC-g-PVI-3 | 0.95 | 0.4 ± 0.04 | 0.94 | (5 ± 0.6) × 10−3 | 0.98 | 0.6 ± 0.002 | 0.1 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavlinskaya, M.S.; Mikhaylova, A.A.; Kuznetsov, E.I.; Zhuravlev, I.A.; Balbekov, N.A.; Saranov, I.A.; Sorokin, A.V. Graft Copolymers of Carboxymethyl Cellulose and Poly(N-vinylimidazole) as Promising Carriers for Metronidazole. Polysaccharides 2024, 5, 198-211. https://doi.org/10.3390/polysaccharides5030015
Lavlinskaya MS, Mikhaylova AA, Kuznetsov EI, Zhuravlev IA, Balbekov NA, Saranov IA, Sorokin AV. Graft Copolymers of Carboxymethyl Cellulose and Poly(N-vinylimidazole) as Promising Carriers for Metronidazole. Polysaccharides. 2024; 5(3):198-211. https://doi.org/10.3390/polysaccharides5030015
Chicago/Turabian StyleLavlinskaya, Maria S., Anastasia A. Mikhaylova, Egor I. Kuznetsov, Ivan A. Zhuravlev, Nikita A. Balbekov, Igor A. Saranov, and Andrey V. Sorokin. 2024. "Graft Copolymers of Carboxymethyl Cellulose and Poly(N-vinylimidazole) as Promising Carriers for Metronidazole" Polysaccharides 5, no. 3: 198-211. https://doi.org/10.3390/polysaccharides5030015
APA StyleLavlinskaya, M. S., Mikhaylova, A. A., Kuznetsov, E. I., Zhuravlev, I. A., Balbekov, N. A., Saranov, I. A., & Sorokin, A. V. (2024). Graft Copolymers of Carboxymethyl Cellulose and Poly(N-vinylimidazole) as Promising Carriers for Metronidazole. Polysaccharides, 5(3), 198-211. https://doi.org/10.3390/polysaccharides5030015