Use of Radioisotopes to Produce High Yielding Crops in Order to Increase Agricultural Production †
Abstract
:1. Introduction
2. Application of Radioactive Tracers in Agricultural Chemistry
3. Sunflower in Field Extracts Radioisotopes from the Soil
4. Radio-isotopic Determining the Function of Fertilizers in Different Plants
5. Agricultural Applications of Radioactive Tracers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belchenko, S.A.; Torikov, V.E.; Shapovalov, V.F.; Belous, I.N.; Dronov, A. Technology of cultivation of fodder crops in conditions of radioactive contamination and their impact on the content of heavy metals and cesium-137. Bull. Bryansk State Agric. Acad. 2016, 2, 58–67. [Google Scholar]
- Shpakov, A.S.; Bychkov, G. Field feed production, the state and tasks of scientific support. Feed Prod. 2010, 10, 3–9. [Google Scholar]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Adhikari, T.; Gowda, R.C.; Wanjari, R.H.; Singh, M. Impact of Continuous Fertilization on Heavy Metals Content in Soil and Food Grains under 25 Years of Long-Term Fertilizer Experiment. Commun. Soil Sci. Plant Anal. 2020, 52, 389–405. [Google Scholar] [CrossRef]
- Wang, B.; Chu, C.; Wei, H.; Zhang, L.; Ahmad, Z.; Wu, S.; Xie, B. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ. Pollut. 2020, 267, 115411. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, M.; Thomas, J.; Kumar, K.A.; Bhople, B.S.; Saresh, N.V.; Vaid, S.K.; Sahu, S.K. Zeolite farming: A sustainable agricultural prospective. IJCMAS 2018, 7, 2912–2924. [Google Scholar] [CrossRef]
- Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of zeolites for sustainable agriculture: A review on water and nutrient retention. Water Air Soil Pollut. 2017, 228, 464. [Google Scholar] [CrossRef]
- Siyal, A.L.; Fozia, K.S.; Tahira, J. Yield from genetic variability of bread wheat (Triticum aestivum L.) genotypes under water stress condition: A case study of Tandojam, Sindh. Pure Appl. Biol. 2021, 10, 841–860. [Google Scholar] [CrossRef]
- Ren, X.; Xiao, L.; Qu, R.; Liu, S.; Ye, D.; Song, H.; Wu, W.; Zheng, C.; Wu, X.; Gao, X. Synthesis and characterization of a single phase zeolite A using coal fly ash. RSC Adv. 2018, 8, 42200–42209. [Google Scholar] [CrossRef] [Green Version]
- Doni, S.; Gispert, M.; Peruzzi, E.; Macci, C.; Mattii, G.B.; Manzi, D.; Masini, C.M.; Grazia, M. Impact of natural zeolite on chemical and biochemical properties of vineyard soils. Soil Use Manag. 2020, 37, 832–842. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef] [Green Version]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Till. Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Chen, T.; Wilson, L.T.; Liang, Q.; Xia, G.; Chen, W.; Chi, D. Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice. Arch. Agron. Soil Sci. 2017, 63, 1210–1226. [Google Scholar] [CrossRef]
- Sun, Y.; He, Z.; Wu, Q.; Zheng, J.; Li, Y.; Wang, Y.; Chen, T.; Chi, D. Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field. Agric. Water Manag. 2020, 235, 106126. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, Q.; Ren, X.; Zhao, J.; Huang, H.; Awasthi, S.K.; Lahori, A.H.; Li, R.; Zhou, L.; Zhang, Z. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresour. Technol. 2016, 219, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Floros, G.D.; Kokkari, A.I.; Kouloussis, N.A.; Kantiranis, N.A.; Damos, P.; Filippidis, A.A.; Koveos, D.S. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes. J. Econ. Entomol. 2018, 111, 482–490. [Google Scholar] [CrossRef]
- Siyal, A.L.; Ali, G.C.; Nasiruddin, S.; Jay, K.S.; Tahira, J.; Fozia, K.S.; Muhammad, S.C. Screening of Wheat Genotypes for Morphological, Physiological and Phenological Traits under Climatic Condition. Eur. J. Biol. Biotechnol. 2021, 2, 87–91. [Google Scholar] [CrossRef]
- Stavi, I.; Rahamim, S.; Gidon, R.; Judith, L. Ancient to Recent-Past Runoff Harvesting Agriculture in Recharge Playas of the Hyper-Arid Southern Israel. Water 2017, 9, 991. [Google Scholar] [CrossRef] [Green Version]
- Arnáez, J.; Lana-Renault, N.; Lasanta, T.; Ruiz-Flaño, P.; Castroviejo, J. Effects of farming terraces on hydrological and geomorphological processes. A review. Catena 2015, 128, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Kosmowski, F. Soil water management practices (terraces) helped to mitigate the 2015 drought in Ethiopia. Agric. Water Manag. 2018, 204, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Kasielke, T.; Li, H.; Zhang, B.; Zepp, H. May agricultural terraces induce gully erosion? A case study from the Black soil region of northeast China. Sci. Total Environ. 2020, 750, 141715. [Google Scholar] [CrossRef] [PubMed]
- Sabir, M. The Terraces of the Anti-Atlas: From Abandonment to the Risk of Degradation of a Landscape Heritage. Water 2021, 13, 510. [Google Scholar] [CrossRef]
- Brandolini, P.; Cevasco, A.; Capolongo, D.; Pepe, G.; Lovergine, F.; Del Monte, M. Response of Terraced Slopes to a Very Intense Rainfall Event and Relationships with Land Abandonment: A Case Study from Cinque Terre (Italy). Land Degrad. Dev. 2017, 29, 630–642. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, M.; Yang, T.; Chen, W.; Yang, T. Global atmospheric sulfur deposition and associated impaction on nitrogen cycling in ecosystems. J. Clean. Prod. 2018, 195, 1–9. [Google Scholar] [CrossRef]
- Nakanishi, T.M. What you can see by developing real-time radioisotope imaging system for plants: From water to element and CO2 gas imaging. J. Radioanal. Nucl. Chem. 2018, 318, 1689–1695. [Google Scholar] [CrossRef] [PubMed]
- Vermien, C.; Smolder, R.; McLaughlin, M.J.; Degryse, F. Model-based rationalization of sulphur mineralization in soils using 35S isotope dilution. Soil Biol. Biochem. 2018, 120, 1–11. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Divito, G.A.; Fernández, L.A.; Echeverría, H.E. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J. Plant Nutr. 2017, 40, 1231–1242. [Google Scholar] [CrossRef]
- Gourav, N.K.S.; Shrama, R.P.; Sharma, G.D. Vertical distribution of sulfur fractions in a continuously fertilized acid alfisol under maize-wheat cropping system. Commun. Soil Sci. Plant Anal. 2018, 49, 923–933. [Google Scholar]
- Sedlář, O.; Balík, J.; Kulhánek, M.; Černý, J.; Matěchová, M.; Suran, P. Crop sulfur status in relation to soil sulfur determined using anion exchange membranes and Mehlich 3. J. Plant Nutr. 2021, 44, 1563–1570. [Google Scholar]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P. Soil organic matter degradation in long-term maize cultivation and insufficient organic fertilization. Plants 2020, 9, 1217. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.K.; Kumar, M. Sulphate contamination in groundwater and its remediation: An overview. Environ. Monit. Assess. 2020, 192, 74. [Google Scholar] [CrossRef] [PubMed]
- Goswami, D.; Thakker, J.N.; Dhandhukia, P.C. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Null 2016, 2, 1127500. [Google Scholar] [CrossRef]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siyal, A.L. Effect of bio fertilizer in addition with phosphorus on the growth of maize (zea mays L.). Intern. J. Adv. Res. 2017, 5, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Housh, A.B.; Powell, G.; Scott, S.; Anstaett, A.; Gerheart, A.; Benoit, M.; Waller, S.; Powell, A.; Guthrie, J.M.; Higgins, B.; et al. Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation. ISME J. 2021, 15, 1505–1522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kong, X.; Zhou, R.; Zhang, Z.; Zhang, J.; Wang, L.; Wang, Q. Harnessing perennial and indeterminant growth habits for ratoon cotton (Gossypium spp.) cropping. Ecosyst. Health Sustain. 2020, 6, 1715264. [Google Scholar] [CrossRef] [Green Version]
- Sarfraz, Z.; Iqbal, M.S.; Pan, Z.; Jia, Y.; He, S.; Wang, Q.; Qin, H.; Liu, J.; Liu, H.; Yang, J.; et al. Integration of conventional and advanced molecular tools to track footprints of heterosis in cotton. BMC Genom. 2018, 19, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veres, A.; Wyckhuys, K.A.; Kiss, J.; Tóth, F.; Burgio, G.; Pons, X.; Avilla, C.; Vidal, S.; Razinger, J.; Bazok, R. An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems. Environ. Sci. Pollut. Res. 2020, 27, 29867–29899. [Google Scholar] [CrossRef]
- Siyal, A.L.; Toheed, G.M.; Fawad, S.; Fozia, K.S.; Tahira, J.; Fida, H.M.; Nasiruddin, S.; Imtiaz, H.B.; Akbar, H. Climate Change: Impacts on the Production of Cotton in Pakistan. Eur. J. Agric. Food Sci. 2021, 3, 97–100. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. An Assessment of Radiological Hazards from Gold Mine Tailings in the Province of Gauteng in South Africa. Int. J. Environ. Res. Public Health 2016, 13, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winde, F.; Wade, P.; van der Walt, I.J. Gold tailings as a source of waterborne uranium contamination of streams—The Koekemoerspruit (Klerksdorp goldfield, South Africa) as a case study. Part 1: Uranium migration along the aqueous pathway. Water SA 2004, 30, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Winde, F.; Stoch, E.J. Threats and opportunities for post-closure development in dolomitic gold mining areas of the West Rand and Far West Rand—A hydraulic view Part 3: Planning and uncertainty—Lessons from history. Water SA 2010, 36, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Tufail, M. Radium equivalent activity in the light of UNSCEAR report. Environ. Monit. Assess. 2012, 184, 5663–5667. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Kim, E. Sustainable Development in World Trade Law: Application of the Precautionary Principle in Korea-Radionuclides. Sustainability 2019, 11, 1942. [Google Scholar] [CrossRef] [Green Version]
- Aseeva, A. (Un) Sustainable Development (s) in International Economic Law: A Quest for Sustainability. Sustainability 2018, 10, 4022. [Google Scholar] [CrossRef] [Green Version]
- Tedsen, E.; Homann, G. Implementing the Precautionary Principle for Climate Engineering. Carbon Clim. Law Rev. 2013, 7, 90–100. [Google Scholar] [CrossRef]
- Wagner, M. Taking Interdependence Seriously: The Need for a Reassessment of the Precautionary Principle in International Trade Law. Cardozo J. Int. Comp. Law 2011, 20, 713–769. [Google Scholar]
- Morris, M. The Precautionary Principle: Good for Environmental Activists, Bad for Business. J. Bus. Adm. 2010, 9, 1–24. [Google Scholar]
- Ansari, A.H.; Wartini, S. Application of Precautionary Principle in International Trade Law and International Environmental Law: A Comparative Assessment. J. Int. Trade Law Policy 2014, 13, 19–43. [Google Scholar] [CrossRef]
- Fattore, C. Interest Group Influence on WTO Dispute Behaviour: A Test of State Commitment. J. World Trade 2012, 46, 1261–1280. [Google Scholar] [CrossRef]
- Mba, C. Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agronomy 2013, 3, 200–231. [Google Scholar] [CrossRef] [Green Version]
- Tester, M.; Langridge, P. Breeding technologies to increase crop production in a changing world. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Hertel, T.W.; Burke, M.B.; Lobell, D.B. The poverty implications of climate-induced crop yield changes by 2030. Glob. Environ. Change 2010, 20, 577–585. [Google Scholar] [CrossRef] [Green Version]
- McCouch, S. Diversifying selection in plant breeding. PLoS Biol. 2004, 2, 1507–1512. [Google Scholar] [CrossRef]
- Mba, C.; Guimaraes, P.; Ghosh, K. Re-orienting crop improvement for the changing climatic conditions of the 21st century. Agric. Food Secur. 2012, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Till, B.J.; Jankowicz-Cieslak, J.; Sagi, L.; Huynh, O.A.; Utsushi, H.; Swennen, R.; Terauchi, R.; Mba, C. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling. Theor. Appl. Genet. 2010, 121, 1381–1389. [Google Scholar] [CrossRef] [Green Version]
- Sai, H.; Howell, T.; Nitcher, R.; Missirian, V.; Watson, B.; Ngo, K.J.; Lieberman, M.; Fass, J.; Uauy, C.; Tran, R.K.; et al. Discovery of Rare Mutations in Populations: TILLING by Sequencing. Plant Physiol. 2011, 156, 1257–1268. [Google Scholar] [CrossRef] [Green Version]
- Uccelli, L.; Martini, P.; Cittanti, C.; Carnevale, A.; Missiroli, L.; Giganti, M.; Bartolomei, M.; Boschi, A. Therapeutic Radiometals: Worldwide Scientific Literature Trend Analysis (2008–2018). Molecules 2019, 24, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDevitt, M.R.; Sgouros, G.; Sofou, S. Targeted and Nontargeted α-Particle Therapies. Annu. Rev. Biomed. Eng. 2018, 20, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Qaim, S.M.; Spahn, I. Development of novel radionuclides for medical applications. J. Label. Comp. Radiopharm. 2018, 61, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Van der Meulen, N.P.; Benešová, M.; Schibli, R. Therapeutic Radiometals Beyond 177Lu and 90Y: Production and Application of Promising alpha-Particle, beta-Particle, and Auger Electron Emitters. J. Nucl. Med. 2017, 58, 91S–96S. [Google Scholar] [CrossRef] [Green Version]
- Aghevlian, S.; Boyle, A.J.; Reilly, R.M. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv. Drug Deliv. Rev. 2017, 109, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Osanai, M.; Hirano, D.; Mitsuhashi, S.; Kudo, K.; Hosokawa, S.; Tsushima, M.; Iwaoka, K.; Yamaguchi, I.; Tsujiguchi, T.; Hosoda, M.; et al. Estimation of Effect of Radiation Dose Reduction for Internal Exposure by Food Regulations under the Current Criteria for Radionuclides in Foodstuff in Japan Using Monitoring Results. Foods 2021, 10, 691. [Google Scholar] [CrossRef] [PubMed]
- Hamada, N.; Ogino, H.; Fujimichi, Y. Safety regulations of food and water implemented in the first year following the Fukushima nuclear accident. J. Radiat. Res. 2012, 53, 641–671. [Google Scholar] [CrossRef] [Green Version]
- Irving, L.J. Carbon Assimilation, Biomass Partitioning and Productivity in Grasses. Agriculture 2015, 5, 1116–1134. [Google Scholar] [CrossRef] [Green Version]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analysis of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Studer, R.A.; Christin, P.A.; Williams, M.A.; Orengo, C.A. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proc. Natl. Acad. Sci. USA 2014, 111, 2223–2228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudo, E.; Suzuki, Y.; Makino, A. Whole plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures. Plant Cell Physiol. 2014, 55, 1905–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaembah, E.N.; Irving, L.J.; Thom, E.R.; Faville, M.J.; Easton, H.S.; Matthew, C. Leaf Rubisco turnover in a perennial ryegrass (Lolium perenne L.) mapping population: Genetic variation, identification of associated QTL, and correlation with plant morphology and yield. J. Exp. Bot. 2013, 64, 1305–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelbart, W.Z.; Johnson, R.R. Molybdenum Sinter-Cladding of Solid Radioisotope Targets. Instruments 2019, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Stolarz, A.; Kowalska, J.A.; Jasinski, P.; Janiak, T.; Samorajczyk, J. Molybdenum targets produced by mechanical reshaping. J. Radioanal. Nucl. Chem. 2015, 305, 947–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolarz, A. Target preparation for research with charged projectiles. J. Radioanal. Nucl. Chem. 2014, 299, 913–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bénard, F.; Buckley, K.R.; Ruth, T.J.; Zeisler, S.K.; Klug, J.; Hanemaayer, V.; Vuckovic, M.; Hou, X.; Celler, A.; Appiah, J.P.; et al. Implementation of Multi-Curie Production of 99mTc by Conventional Medical Cyclotrons. J. Nucl. Med. 2014, 55, 1017–1022. [Google Scholar] [CrossRef] [Green Version]
- Sklairova, H.; Cisterno, S.; Cicoria, G.; Marengo, M.; Palmieri, V. Innovative Target for Production of Technetium-99m by Biomedical Cyclotron. Molecules 2019, 24, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matei, L.; McRae, G.; Galea, R.; Niculae, D.; Craciun, L.; Leonte, R.; Surette, G.; Langille, S.; St. Louis, C.; Gelbart, W.; et al. A new approach for manufacturing and processing targets used to produce 99mTc with cyclotrons. Mod. Phys. Lett. A 2017, 32, 1740011. [Google Scholar] [CrossRef] [Green Version]
- Braccini, S.; Alves, F. Special Issue “Instruments and Methods for Cyclotron Produced Radioisotopes”. Instruments 2019, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Kreller, M.; Pietzsch, H.J.; Walther, M.; Tietze, H.; Kaever, P.; Knieß, T.; Füchtner, F.; Steinbach, J.; Preusche, S. Introduction of the New Center for Radiopharmaceutical Cancer Research at Helmholtz-Zentrum Dresden-Rossendorf. Instruments 2019, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Nesteruk, K.P.; Ramseyer, L.; Carzaniga, T.S.; Braccini, S. Measurement of the Beam Energy Distribution of a Medical Cyclotron with a Multi-Leaf Faraday Cup. Instruments 2019, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Do Carmo, S.J.; de Oliveira, P.M.; Alves, F. Simple, Immediate and Calibration-Free Cyclotron Proton Beam Energy Determination Using Commercial Targets. Instruments 2019, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Steyn, G.F.; Anthony, L.S.; Azaiez, F.; Baard, S.; Bark, R.A.; Barnard, A.H.; Beukes, P.; Broodryk, J.I.; Conradie, J.L.; Cornell, J.C.; et al. Development of New Target Stations for the South African Isotope Facility. Instruments 2018, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Sitarz, M.; Jastrzębski, J.; Haddad, F.; Matulewicz, T.; Szkliniarz, K.; Zipper, W. Can We Extract Production Cross-Sections from Thick Target Yield Measurements? A Case Study Using Scandium Radioisotopes. Instruments 2019, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Vaudon, J.; Frealle, L.; Audiger, G.; Dutillly, E.; Gervais, M.; Sursin, E.; Ruggeri, C.; Duval, F.; Bouchetou, M.L.; Bombard, A.; et al. First Steps at the Cyclotron of Orléans in the Radiochemistry of Radiometals: 52Mn and 165Er. Instruments 2018, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.; Metello, L.F.; Alves, F.; Duarte Naia, M. Cyclotron Production of Unconventional Radionuclides for PET Imaging: The Example of Titanium-45 and Its Applications. Instruments 2018, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhuravlev, I. Titanium Silicates Precipitated on the Rice Husk Biochar as Adsorbents for the Extraction of Cesium and Strontium Radioisotope Ions. Colloids Interfaces 2019, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Tomar, R.; Tomar, R.; Tomar, S. Sorption of homologues of radionuclides by synthetic ion exchanger. Microporous Mesoporous Mater. 2011, 142, 629–640. [Google Scholar] [CrossRef]
- Abdel Rahman, R.; Ibrahim, H.; Hung, Y. Liquid Radioactive Wastes Treatment: A Review. Water 2011, 3, 551–565. [Google Scholar] [CrossRef] [Green Version]
- Strelko, V.; Milyutin, V.; Gelis, V.; Psareva, T.; Zhuravlev, I.; Shaposhnikova, T.; Milgrandt, V.; Bortun, A. Sorption of cesium radionuclides onto semicrystalline alkali metal silicotitanates. Radiochemistry 2015, 57, 73–78. [Google Scholar] [CrossRef]
- Vincent, T.; Vincent, C.; Guibal, E. Immobilization of Metal Hexacyanoferrate Ion-Exchangers for the Synthesis of Metal Ion Sorbents—A Mini-Review. Molecules 2015, 20, 20582–20613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzui, N.; Tanoi, K.; Furukawa, J.; Kawachi, N. Recent Advances in Radioisotope Imaging Technology for Plant Science Research in Japan. Quantum Beam Sci. 2019, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Kanno, S.; Arrighi, J.-F.; Chiarenza, S.; Bayle, V.; Berthomé, R.; Péret, B.; Javot, H.; Delannoy, E.; Marin, E.; Nakanishi, T.M.; et al. A novel role for the root cap in phosphate uptake and homeostasis. Elife 2016, 5, e14577. [Google Scholar] [CrossRef]
- Sugita, R.; Kobayashi, N.I.; Hirose, A.; Tanoi, K.; Nakanishi, T.M. Evaluation ofin vivodetection properties of 22Na, 65Zn, 86Rb, 109Cd and 137Cs in plant tissues using real-time radioisotope imaging system. Phys. Med. Biol. 2014, 59, 837–851. [Google Scholar] [CrossRef] [PubMed]
- Sugita, R.; Kobayashi, N.I.; Hirose, A.; Ohmae, Y.; Tanoi, K.; Nakanishi, T.M. Nondestructive real-time radioisotope imaging system for visualizing 14C-labeled chemicals supplied as CO2 in plants using Arabidopsis thaliana. J. Radioanal. Nucl. Chem. 2013, 298, 1411–1416. [Google Scholar] [CrossRef]
- Sugita, R.; Sugahara, K.; Kobayashi, N.I.; Hirose, A.; Nakanishi, T.M.; Furuta, E.; Sensui, M.; Tanoi, K. Evaluation of plastic scintillators for live imaging of 14C-labeled photosynthate movement in plants. J. Radioanal. Nucl. Chem. 2018, 318, 579–584. [Google Scholar] [CrossRef]
- Sugita, R.; Kobayashi, N.I.; Hirose, A.; Saito, T.; Iwata, R.; Tanoi, K.; Nakanishi, T.M. Visualization of Uptake of Mineral Elements and the Dynamics of Photosynthates in Arabidopsis by a Newly Developed Real-Time Radioisotope Imaging System (RRIS). Plant Cell Physiol. 2016, 57, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugita, R.; Kobayashi, N.I.; Hirose, A.; Iwata, R.; Suzuki, H.; Tanoi, K.; Nakanishi, T.M. Visualization of how light changes affect ion movement in rice plants using a real-time radioisotope imaging system. J. Radioanal. Nucl. Chem. 2017, 312, 717–723. [Google Scholar] [CrossRef]
- Nussaume, L.; Kanno, S.; Javot, H.; Marin, E.; Nakanishi, T.M.; Thibaud, M.-C. Phosphate Import in Plants: Focus on the PHT1 Transporters. Front. Plant Sci. 2011, 2, 83. [Google Scholar] [CrossRef] [Green Version]
- Kanno, S.; Cuyas, L.; Javot, H.; Bligny, R.; Gout, E.; Dartevelle, T.; Hanchi, M.; Nakanishi, T.M.; Thibaud, M.-C.; Nussaume, L. Performance and Limitations of Phosphate Quantification: Guidelines for Plant Biologists. Plant Cell Physiol. 2016, 57, 690–706. [Google Scholar] [CrossRef] [Green Version]
- Sugita, R.; Kobayashi, N.I.; Hirose, A.; Tanoi, K.; Nakanishi, T.M. Visualization of Ion Transport in Plants. In Agricultural Implications of the Fukushima Nuclear Accident (III): After 7 Years; Nakanishi, T.M., O’Brien, M., Tanoi, K., Eds.; Springer: Singapore, 2019; pp. 221–231. [Google Scholar]
- McKay, R.M.L.; Palmer, G.R.; Ma, X.P.; Layzell, D.B.; McKee, B.T.A. The use of positron emission tomography for studies of long-distance transport in plants: Uptake and transport of 18F. Plant Cell Environ. 1988, 11, 851–861. [Google Scholar] [CrossRef]
- Nakamura, S.-I.; Suzui, N.; Nagasaka, T.; Komatsu, F.; Ishioka, N.S.; Ito-Tanabata, S.; Kawachi, N.; Rai, H.; Hattori, H.; Chino, M.; et al. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J. Exp. Bot. 2013, 64, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Yin, Y.-G.; Ishikawa, S.; Suzui, N.; Kawachi, N.; Fujimaki, S.; Igura, M.; Yuan, C.; Huang, J.; Li, Z.; et al. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola. Environ. Sci. Pollut. Res. 2013, 20, 6306–6316. [Google Scholar] [CrossRef] [PubMed]
- Suzui, N.; Yin, Y.-G.; Ishii, S.; Sekimoto, H.; Kawachi, N. Visualization of zinc dynamics in intact plants using positron imaging of commercially available 65Zn. Plant Methods 2017, 13, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawachi, N.; Yin, Y.-G.; Suzui, N.; Ishii, S.; Yoshihara, T.; Watabe, H.; Yamamoto, S.; Fujimaki, S. Imaging of radiocesium uptake dynamics in a plant body by using a newly developed high-resolution gamma camera. J. Environ. Radioact. 2016, 151, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, J.; Kaur, A. Applications of radioisotopes in agriculture. Int. J. Biotech. Bioeng. Res. 2013, 4, 167–174. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siyal, A.L.; Hossain, A.; Siyal, F.K.; Jatt, T.; Iram, S. Use of Radioisotopes to Produce High Yielding Crops in Order to Increase Agricultural Production. Chem. Proc. 2022, 10, 86. https://doi.org/10.3390/IOCAG2022-12267
Siyal AL, Hossain A, Siyal FK, Jatt T, Iram S. Use of Radioisotopes to Produce High Yielding Crops in Order to Increase Agricultural Production. Chemistry Proceedings. 2022; 10(1):86. https://doi.org/10.3390/IOCAG2022-12267
Chicago/Turabian StyleSiyal, Ayaz Latif, Akbar Hossain, Fozia Khan Siyal, Tahira Jatt, and Sadia Iram. 2022. "Use of Radioisotopes to Produce High Yielding Crops in Order to Increase Agricultural Production" Chemistry Proceedings 10, no. 1: 86. https://doi.org/10.3390/IOCAG2022-12267
APA StyleSiyal, A. L., Hossain, A., Siyal, F. K., Jatt, T., & Iram, S. (2022). Use of Radioisotopes to Produce High Yielding Crops in Order to Increase Agricultural Production. Chemistry Proceedings, 10(1), 86. https://doi.org/10.3390/IOCAG2022-12267