Catalytic Cycloaddition of Diazo Compounds Based on Pharmacologically Significant and Natural Compounds to C60-Fullerene † †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sidorov, L.N.; Yurovskaya, M.A. Fullerenes; Ekzamen: Moscow, Russia, 2005; 688p. [Google Scholar]
- Tokyjama, H.; Yamago, S.; Nakamura, E. Photoinduced biochemical activity of fullerene carboxylic acid. J. Am. Chem. Soc. 1993, 115, 7918–7919. [Google Scholar] [CrossRef]
- Ikeda, A.; Hatano, T.; Kawaguchi, M.; Shinkai, S.; Suenaga, H. Water–soluble [60]fullerene–cationic homooxacalix [3]arene complex which is applicable to the photocleavage of DNA. Chem. Commun. 1999, 1403–1404. [Google Scholar] [CrossRef]
- Osterodt, J.; Zett, A.; Vortle, F. Fullerenes by Pyrolysis of Hydrocarbons and Synthesis of Isomeric Methanofullerenes. Tetrahedron 1996, 52, 4949–4962. [Google Scholar] [CrossRef]
- Tsao, N.; Luh, T.-Y.; Chou, C.-K.; Chang, T.-Y.; Wu, J.-J.; Liu, C.-C.; Lei, H.-Y. In vitro action of carboxyfullerene. J. Antimicrob. Chemother. 2002, 49, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Krusic, P.J.; Wasserman, E.; Keizer, P.N.; Morton, J.R.; Preston, K.F. Radical reactions in C60. Science. 1991, 254, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Takada, H.; Gana, X.; Miwa, N. The water–soluble fullerene derivate “Radical Sponge” exerts cytoprotective action against UVA irradiation but not visible–ligth–catalysedcytotoxity in human skin keratinocytes. Bioorg. Med. Chem. Lett. 2006, 16, 1590–1595. [Google Scholar] [CrossRef]
- Dugan, L.L.; Turelsky, D.M.; Lobner, C.; Du, D.; Wheler, M.; Almli, R.; Shen, C.K.; Luh, T.Y.; Choi, D.; Lin, T.S. Carboxylfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. USA 1997, 94, 9434–9439. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.H.; DeCamp, D.L.; Sijbesma, R.P.; Srdanov, G.; Wudl, F.; Kenyon, G.L. Inhibition of the HIV–I Protease by Fullerene Derivatives: Model Building Studies and Experimental Verification. J. Am. Chem. Soc. 1993, 115, 6506–6509. [Google Scholar] [CrossRef]
- Mashino, T.; Okuda, K.; Hirota, T.; Hirobe, M.; Nagano, T.; Mochizuki, M. Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorg. Med. Chem. Lett. 1999, 9, 2959–2962. [Google Scholar] [CrossRef]
- Bosi, S.; Da Ros, T.; Castellano, S.; Banfi, E.; Prato, M. Antimycobacterial Activity of Ionic Fullerene Derivatives. Bioorg. Med. Chem. Lett. 2000, 10, 1043–1045. [Google Scholar] [CrossRef] [PubMed]
- Mashino, T.; Nishikawa, D.; Takanashi, K.; Usui, N.; Yamori, T.; Seki, M.; Endo, T.; Mochizuki, M. Antibacterial and antiproliferative activity of cationic fullerene derivatives. Bioorg. Med. Chem. Lett. 2003, 13, 4395–4397. [Google Scholar] [CrossRef]
- Bingel, C. Cyclopropanierung von Fullerenen. Chem. Ber. 1993, 126, 1957–1959. [Google Scholar] [CrossRef]
- Camps, X.; Hirsch, A. Efficient cyclopropanation of C60 starting from malonates. J. Chem. Soc. Perkin Trans. 1997, 1, 1595–1596. [Google Scholar] [CrossRef]
- Suzuki, T.; Li, Q.; Khemani, K.C.; Wudl, F. Dihydrofulleroid H2C61: Synthesis and properties of the parent fulleroid. J. Am. Chem. Soc. 1992, 114, 7301–7302. [Google Scholar] [CrossRef]
- Smith, A.B., III; Strongin, R.M.; Brard, L.; Furst, G.T.; Romanov, W. 1,2–Methanobuckminsterfullerene (C61H2), the parent fullerene cyclopropane: Synthesis and structure. J. Am. Chem. Soc. 1993, 115, 5829–5830. [Google Scholar] [CrossRef]
- Smith, A.B., III; Strongin, R.M.; Brard, L.; Furst, G.T.; Romanov, W.J.; Owens, K.G.; Goldschmidt, R.J.; King, R.C. Synthesis of Prototypical Fullerene Cyclopropanes and Annulenes.Isomer Differentiation via NMR and UV Spectroscopy. J. Am. Chem. Soc. 1995, 117, 5492–5502. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Akhmetov, A.R.; Kamalov, R.F.; Khalilov, L.M.; Pudas, M.; Ibragimov, A.G.; Dzhemilev, U.M. Catalytic [2+1]-cycloaddition of ethyl diazoacetate to fullerene [60]. Russ. J. Org. Chem. 2009, 45, 1168–1174. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Akhmetov, A.R.; Sabirov, D.S.; Khalilov, L.M.; Ibragimov, A.G.; Dzhemilev, U.M. Catalytic [2+1] –cycloaddition of diazo compounds to fullerene [60]. Russ. Chem. Bull. 2009, 8, 1724–1730. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Korolev, V.V.; Dzhemilev, U.M. Catalytic cycloaddition of diazoalkanes generated in situ to C60-fullerene. J. Org. Chem. 2010, 46, 595–596. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Korolev, V.V.; Tulyabaev, A.R.; Yanybin, V.M.; Khalilov, L.M.; Dzhemilev, U.M. Cycloaddition of cyclic diazo compounds to C60 fullerene in the presence of a Pd–containing complex catalyst. Russ. Chem. Bull. 2010, 5, 977–993. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Akhmetov, A.R.; Khalilov, L.M.; Dzhemilev, U.M. Catalytic cycloaddition of diazoketones to C60 fullerene. Russ. Chem. Bull. 2010, 3, 598. [Google Scholar]
- Tuktarov, A.R.; Akhmetov, A.R.; Korolev, V.V.; Khuzin, A.A.; Khasanova, L.L.; Popod’ko, N.R.; Khalilov, L.M. Palladium–catalyzed selective cycloaddition of diazo compounds to [60]fullerene. Arkivoc 2011, 8, 54–66. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Khuzina, L.L.; Dzhemilev, U.M. Covalent binding of fullerene C60 to pharmacologically important compounds. Russ. Chem. Bull. 2011, 4, 662–666. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Khuzina, L.L.; Popod’ko, N.R.; Zhemilev, U.M.D. Catalytic cycloaddition of diazo amides to fullerene 60. Tetrahedron Lett. 2013, 54, 2146–2148. [Google Scholar] [CrossRef]
- Skiebe, A.; Hirsch, A. A facile method for the synthesis of amino acid and amido derivatives of C60. J. Chem. Soc. Chem. Commun. 1994, 3, 335–336. [Google Scholar] [CrossRef]
- Wang, G.-W.; Li, Y.-J.; Peng, R.-F.; Liang, Z.-H.; Liu, Y.-C. Are the pyrazolines formed from the reaction of [60]fullerene with alkyl diazoacetates unstable? Tetrahedron 2004, 60, 3921–3925. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Khuzin, A.A.; Popod’ko, N.R.; Dzhemilev, U.M. Cycloaddition of diazothioates to [60] fullerene. Tetrahedron Lett. 2012, 53, 3123–3125. [Google Scholar] [CrossRef]
- Tuktarov, A.R.; Khuzina, L.L.; Dzhemilev, U.M. Catalytic synthesis of optically active functionally substituted fullerenes. In Proceedings of the All–Russian Conference: “Organic synthesis: Chemistry and technology”, Ekaterinburg, Russia, 4–8 June 2012; p. 105. [Google Scholar]
- Krantz, A.; Copp, L.J.; Coles, P.J.; Smith, R.A.; Heard, S.B. Peptidyl(acyloxy)methyl ketones and the quiescent affinity label concept: The departing group as a variable structural element in the design of inactivators of cysteine proteinases. Biochemistry 1991, 30, 4678–4687. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.F.; Li, L.; Zou, W.; Huang, Y.Q.; Gao, J.X. Synthesis and CD Spectra of Chiral Molybdenum–fullerenyl Complexes with Pineno–bipyridine Ligands. ChineseChem. Lett. 2004, 15, 1411–1414. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khuzina, L.L.; Tuktarov, A.R.; Dzhemilev, U.M.
Catalytic Cycloaddition of Diazo Compounds Based on Pharmacologically Significant and Natural Compounds to C60-Fullerene
Khuzina LL, Tuktarov AR, Dzhemilev UM.
Catalytic Cycloaddition of Diazo Compounds Based on Pharmacologically Significant and Natural Compounds to C60-Fullerene
Khuzina, Liliya L., Airat R. Tuktarov, and Usein M. Dzhemilev.
2022. "Catalytic Cycloaddition of Diazo Compounds Based on Pharmacologically Significant and Natural Compounds to C60-Fullerene