Larvicidal Potency of Some Selected Nigerian Plants against Aedes aegypti †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection
2.2. Preparation of the Nigerian Plant Extracts
2.3. Rearing of Test Organism
2.4. Mosquito-Borne Larvicidal Activity against Ae. aegypti
2.5. Phytochemical Screening of Plant Extracts for Larvicidal Efficacy
2.6. Data Analysis
3. Results
3.1. Larvicidal Activity of Different Plant Extracts against Ae. aegypti
3.2. Phytochemical Screening of Plant Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, M.K.; Ansari, M.A. Evaluation of repellent action of Cymbopogan martinii martinii Stapf var Sofia oil against Anopheles sundiacus in tribal villages of Car Nicobar Island, Andaman & Nicobar Islands. India. J. Vect Borne Dis. 2003, 40, 101–104. [Google Scholar]
- Islam, M.T.; Quispe, C.; Herrera-Bravo, J.; Sarkar, C.; Sharma, R.; Garg, N.; Fredes, L.I.; Martorell, M.; Alshehri, M.M.; Sharifi-Rad, J.; et al. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. Biomed. Res. Int. 2021, 4224816. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 10 March 2021).
- Narkhede, C.P.; Patil, C.D.; Suryawanshi, R.K.; Koli, S.H.; Mohite, B.V.; Patil, S.V. Synergistic effect of certain insecticides combined with Bacillus thuringiensis on mosquito larvae. J. Entomol. Acarol. Res. 2017, 49, 6265. [Google Scholar] [CrossRef]
- Braack, L.; GouveiaDeAlmeida, A.P.; Cornel, A.J.; Swanepoel, R.; De Jager, C. Mosquito-borne arboviruses of African origin: Review of key viruses and vectors. Parasites Vectors 2018, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Karunamoorthi, K.; Ilango, K.; Murugan, K. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera:Culicidae). Parasitol. Res. 2010, 106, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Artzy-Randrup, Y.; Alonso, D.; Pascual, M. Transimssion intensity and drug resistance in malaria population dynamics: Implications for climate change. Plosone 2010, 5, e13588. [Google Scholar] [CrossRef]
- Adekola, H.A.; Onajobi, I.B.; Egberongbe, H.O.; Samson, O.J.; Kareem, W.A.; Osippitan, G.O.; Adekola, R.A. Vaccine candidates for arboviruses with pandemic potential: A mini review. Microbiol. Infect. Dis. AMJ 2023. [Google Scholar] [CrossRef]
- Out, A.; Ebenso, B.; Etokidem, A.; Chukwuekezie, O. Dengue fever—An update review and implications for Nigeria, and similar countries. Afr. Health Sci. 2019, 19, 2000–2007. [Google Scholar]
- Van Den Berg, H.; Zaim, M.; Yadav, R.S.; Soares, A.; Ameneshewa, B.; Mnzava, A.; Hii, J.; Dash, A.P.; Ejov, M. Global trends in the use of insecticides to control vector-borne diseases. Env. Health Perspect. 2012, 120, 577–582. [Google Scholar] [CrossRef]
- Sunaiyana, S.; MonthathiP, K.; Krajana, T.; Kornwika, S.; Unchalee, S.; Michael, J.B.; Theeraphap, C. Comparison of Field and Laboratory-Based Tests for Behavioral Response of Aedes aegypti (Diptera: Culicidae) to Repellents. J. Econ. Entomol. 2015, 108, 2770–2778. [Google Scholar]
- McGaughey, W.H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 1985, 229, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Drakou, K.; Nikolaou, T.; Vasquez, M.; Petric, D.; Michaelakis, A.; Kapranas, A.; Papatheodoulou, A.; Koliou, M. The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus. Int. J. Environ. Res. Public Health 2020, 17, 1403. [Google Scholar] [CrossRef] [PubMed]
- Warikoo, R.; Kumar, S. Impact of the Argemone mexicana Stem Extracts on the Reproductive Fitness and Behavior of Adult Dengue Vector, Aedes aegypti L. (Diptera: Culicidae). Int. J. Insect Sci. 2014, 6, 71–78. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Huijben, S. Taking the ‘I’ out of LLINs: Using insecticides in vector control tools other than long-lasting nets to fight malaria. Malar. J. 2020, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- da Silva Sá, G.C.; Bezerra, P.V.V.; da Silva, M.F.A.; da Silva, L.B.; Batista, P.; de Melo, M.F.F.; Uchôa, A.F. Arbovirus vectors insects: Are botanical insecticides an alternative for its management. J. Pest. Sci. 2022, 96, 1–20. [Google Scholar] [CrossRef]
- Karunamoorthi, K.; Sabesan, S.; Jegajeevanram, K.; Vijayalakshmi, J. The role of traditional anti-malarial plants in the battle against global malaria burden. Vect. Borne Zoonot Dis. 2013, 13, 521–544. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-Derived Pesticides as an Alternative to Pest Management and Sustainable Agricultural Production: Prospects, Applications and Challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Kaliyaperumal, K.; Askual, G.; Hayleeyesus, S.F. Mosquito repellent activity of essential oil of Ethiopian ethnomedicinal plant against Afro-tropical malarial vector Anopheles arabiensis. J. King Saud. Univ. Sci. 2014, 26, 305–310. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga, L.L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Demarque, D.P.; Espindola, L.S. Challenges, Advances and Opportunities in Exploring Natural Products to Control Arboviral Disease Vectors. Front. Chem. 2021, 9, 779049. [Google Scholar] [CrossRef]
- Ramzi, A.; El Ouali Lalami, A.; Annemer, S.; Ez Zoubi, Y.; Assouguem, A.; Almutairi, M.H.; Kamel, M.; Peluso, I.; Ercisli, S.; Farah, A. Synergistic Effect of Bioactive Monoterpenes against the Mosquito, Culex pipiens (Diptera: Culicidae). Molecules 2022, 27, 4182. [Google Scholar] [CrossRef] [PubMed]
- Ayed, R.B.; Moreau, F.; Hlima, H.B.; Rebai, A.; Ercisli, S.; Kadoo, N.; Hanana, M.; Assouguem, A.; Ullah, R.; Ali, E.A. SNP discovery and structural insights into OeFAD2 unravelling high oleic/linoleic ratio in olive oil. Comput. Struct. Biotechnol. J. 2022, 20, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Onah, G.T.; Ajaegbu, E.E.; Ezeagha, C.C.; Chigozie, V.U.; Bello, A.M.; Ezeagwu, P.C.; Nwigwe, J.O. Larvicidal and synergistic potentials of some plant extracts against Aedes aegypti. J. Entomol. Zool. Stud. 2022, 10, 177–180. [Google Scholar] [CrossRef]
- Ajaegbu, E.E.; Onah, G.T.; Ikuesan, A.J.; Bello, A.M. Larvicidal synergistic efficacy of plant parts of Lantana camara against Aedes aegypti. J. Entomol. Zool. Stud. 2022, 10, 187–192. [Google Scholar] [CrossRef]
- Ibe, I.C.; Ajaegbu, E.E.; Younoussa, L.; Danga, S.P.Y.; Ezugwu, C.O. Larvicidal Property of the Extract and Fractions of Hannoa klaineana against the Larvae of Aedes aegypti. Curr. J. Appl. Sci. Technol. 2020, 39, 127–132. [Google Scholar] [CrossRef]
- Danga, S.P.Y.; Aboubakar, O.B.F.; Ndouwe, H.M.T.; Yonki, B.; Ngadvou, D.; Younoussa, L.; Ajaegbu, E.E.; Esimone, C.O.; Nukenine, E.N. Towards the use of extracts from Plectranthus glandulosus (Lamiaceae) and Callistemon rigidus (Myrtaceae) leaves to indoor-spray (control) Malaria and other arboviral diseases vector mosquitoes. J. Entomol. Zool. Stud. 2020, 8, 2049–2054. [Google Scholar]
- World Health Organization (WHO). Guidelines for Laboratory and Field Testing of Mosquito Larvicides (No. WHO/CDS/WHOPES/GCDPP/2005.13); World Health Organization (WHO): Geneva, Switzerland, 2005. [Google Scholar]
- Younoussa, L.; Nukenin, N.E.; Danga, Y.S.P.; Ajaegbu, E.E.; Esimone, C.O. Laboratory Evaluations of the Fractions Efficacy of Annona senegalensis (Annonaceae) Leaf Extract on Immature Stage Development of Malarial and Filarial Mosquito Vectors. J. Arthropod-Borne Dis. 2015, 9, 226–237. [Google Scholar]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Duraikannan, G. Larvicidal activity of plant extracts on Aedes Aegypti L. Asian Pac. J. Trop. Biomed. 2012, 2, S1578–S1582. [Google Scholar] [CrossRef]
- Ajaegbu, E.E.; Uzochukwu, I.C.; Danga, S.P.Y.; Okoye, F. Mosquito adulticidal activity of the leaf extracts of Spondias mombin L. against Aedes aegypti L. and isolation of active principles. J. Vector Borne Dis. 2016, 53, 17–22. [Google Scholar] [PubMed]
- Radhika, W.; Naim, W.; Sarita, K. Larvicidal potential of commercially available pine (Pinus longifolia) and cinnamon (Cinnamomum zeylanicum) oils against dengue fever mosquito, Aedes aegypti L. (Diptera; Culicidae). Acta Entomol. Sink. 2011, 54, 793–799. [Google Scholar]
- Choochote, W.; Kanjanapothi, D.; Panthong, A.; Taesotikul, T.; Jitpakdi, A.; Chaithomg, U. Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J. Trop. Med. Public Health 1999, 30, 470–476. [Google Scholar]
- Lee, H.L.; Chiang, Y.F. Insecticidal activity of the herbal plant, Stemona tuberosa Lour to mosquito larvae. Trop. Biomed. 1994, 11, 87–90. [Google Scholar]
- Eich, E. Solanaceae and Convolvulaceae: Secondary Metabolites, Biosynthesis, Chemotaxonomy, Biological and Economic Significance, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–9. [Google Scholar]
- Raj, P.D.; Dutt, P.N.; Bahadur, S.D.; Narayan, Y.U.; Prasad, K.D. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J. Intercult. Ethnopharmacol. 2017, 6, 170. [Google Scholar]
- Agidew, M.G. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull. Natl. Res. Cent. 2022, 46, 87. [Google Scholar] [CrossRef]
- Roopashree, T.S.; Raman, D.; Rani, R.; Narendra, C. Antibacterial activity of antipsoriatic herbs: Cassia tora, Momordica charantia and Calendula officinalis. Int. J. Appl. Res. Nat. Prod. 2008, 1, 20–28. [Google Scholar]
Plant Extracts | Conc (ug/mL) | % Mortality (Mean ± SD) | LC50 (LCL–UCL) (ppm) | LC90 (LCL–UCL) (ppm) | Slope ± SE | χ2 |
---|---|---|---|---|---|---|
MUML | 125 | 0 ± 0 a | 1695.51 (941.86–16,527.09) | 9643.95 (2901.56–1,953,785.82) | 1.70 ±0.555 | 1.41 |
250 | 3 ± 1 b | |||||
500 | 5 ± 1 c | |||||
1000 | 8 ± 1 d | |||||
F-value | 45.33 | |||||
MISS | 125 | 5 ± 1 a | 515.632 (308.17–1435.39) | 6422.89 (1935.12–1,738,207.52) | 1.17 ±0.394 | 0.56 |
250 | 10 ± 1 b | |||||
500 | 13 ± 1 c | |||||
1000 | 15 ± 1.73 c | |||||
F-value | 37.83 | |||||
MISL | 125 | 8 ± 1 a | 473.87 (191.64–18,113.64) | 17,315.88 (2544.20–5.309 × 1021) | 0.82 ± 0.382 | 0.03 |
250 | 10 ± 2 a | |||||
500 | 13 ± 1.73 b | |||||
1000 | 15 ± 1 c | |||||
F-value | 12.89 * | |||||
MNCL | 125 | 0 ± 0 a | 2175.56 | 4936.21 | 3.06 ± 2.476 | 0.30 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 3 ± 1 b | |||||
F-value | 27.0 | |||||
MNCS | 125 | 0 ± 0 a | 412.90 | 1581.25 | 2.20 ± 0.450 | 9.55 |
250 | 13 ± 1.73 b | |||||
500 | 15 ± 1 b | |||||
1000 | 18 ± 1 c | |||||
F-value | 151.2 | |||||
MNCR | 125 | 0 ± 0 a | 17,640.41 | 646,470.32 | 0.82 ± 0.576 | 2.57 |
250 | 3 ± 1 b | |||||
500 | 3 ± 1 b | |||||
1000 | 3 ± 1 b | |||||
F-value | 9.0 * | |||||
MCGS | 125 | 0 ± 0 a | 1612.22 (1101.48–870,933.150) | 3555.40 (1737.40–3,799,407,100) | 3.73 ± 1.725 | 0.84 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 6 ± 1 b | |||||
F-value | 108.0 | |||||
MUGL | 125 | 0 ± 0 a | 2175.56 | 4936.21 | 3.60 ± 2.476 | 0.30 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 3 ± 1 b | |||||
F-value | 27.0 | |||||
MELS | 125 | 6 ± 1.73 a | 3463.29 | 837,509.55 | 0.54 ± 0.395 | 0.20 |
250 | 6 ± 1 a | |||||
500 | 8 ± 1.73 b | |||||
1000 | 10 ± 2 b | |||||
F-value | 4.0 * | |||||
MELL | 125 | 3 ± 1.73 a | 1645.17 (726.39–5,292,069.42) | 34,761.00 (4239.23–2.481 × 1015) | 0.967 ± 0.419 | 0.22 |
250 | 6 ± 1 b | |||||
500 | 8 ± 1 c | |||||
1000 | 10 ± 1 c | |||||
F-value | 17.83 * | |||||
MUMS | 125 | 0 ± 0 | - | - | - | - |
250 | 0 ± 0 | |||||
500 | 0 ± 0 | |||||
1000 | 0 ± 0 | |||||
F-value | - | |||||
MULL | 125 | 0 ± 0 a | 2175.56 | 4936.21 | 3.60 ± 2.476 | 0.30 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 3 ± 1.73 b | |||||
F-value | 9.0 * | |||||
MCSS | 125 | 0 ± 0 a | 2175.56 | 4936.21 | 3.60 ± 2.476 | 0.30 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 3 ± 1 b | |||||
F-value | 27.0 | |||||
MOML | 125 | 0 ± 0 a | 2175.56 | 4936.21 | 3.60 ± 2.476 | 0.30 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 3 ± 1 b | |||||
F-value | 27.0 | |||||
MOMS | 125 | 0 ± 0 | - | - | - | - |
250 | 0 ± 0 | |||||
500 | 0 ± 0 | |||||
1000 | 0 ± 0 | |||||
F-value | - | |||||
MMML | 125 | 0 ± 0 a | 2175.56 | 4936.21 | 3.60 ± 2.476 | 0.30 |
250 | 0 ± 0 a | |||||
500 | 0 ± 0 a | |||||
1000 | 3 ± 1 b | |||||
F-value | 27.0 | |||||
MELR | 125 | 0 ± 0 a | 4438.49 (1375.81–9.723 × 1015) | 51,152.60 (5158.47–3.534 × 1030) | 1.21 ± 0.571 | 2.04 |
250 | 3 ± 1 b | |||||
500 | 3 ± 1 b | |||||
1000 | 5 ± 1 c | |||||
F-value | 17.0 * | |||||
MMNL | 125 | 0 ± 0 | - | - | - | - |
250 | 0 ± 0 | |||||
500 | 0 ± 0 | |||||
1000 | 0 ± 0 | |||||
F-value | - | |||||
MMGL | 125 | 0 ± 0 | - | - | - | - |
250 | 0 ± 0 | |||||
500 | 0 ± 0 | |||||
1000 | 0 ± 0 | |||||
F-value | - | |||||
MONS | 125 | 0 ± 0 | - | - | - | - |
250 | 0 ± 0 | |||||
500 | 0 ± 0 | |||||
1000 | 0 ± 0 | |||||
F-value | - |
Plant Extracts | Phytochemical | |||||
---|---|---|---|---|---|---|
Saponins | Tannins | Alkaloids | Flavonoids | Resins | Steroids | |
MUML | − | +++ | ++ | − | + | + |
MISS | ++ | ++ | + | + | − | + |
MISL | − | +++ | ++ | + | − | ++ |
MNCL | − | ++ | ++ | − | − | ++ |
MNCS | − | +++ | +++ | − | − | ++ |
MNCR | − | +++ | ++ | + | − | + |
MCGS | − | ++ | + | − | − | ++ |
MUGL | − | + | ++ | − | − | ++ |
MELS | − | ++ | + | − | − | + |
MELL | +++ | ++ | + | − | − | + |
MUMS | − | +++ | + | − | − | +++ |
MULL | − | ++ | ++ | − | + | + |
MCSS | − | + | + | − | − | ++ |
MOML | +++ | ++ | ++ | − | + | + |
MOMS | − | + | + | − | − | + |
MMML | +++ | +++ | − | − | − | + |
MELR | − | − | − | + | − | − |
MMNL | ++ | ++ | + | − | − | + |
MMGL | + | +++ | +++ | − | − | − |
MONS | +++ | +++ | +++ | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajaegbu, E.E.; Onah, G.T.; Ikuesan, A.J.; Bello, A.M. Larvicidal Potency of Some Selected Nigerian Plants against Aedes aegypti . Chem. Proc. 2023, 14, 35. https://doi.org/10.3390/ecsoc-27-16156
Ajaegbu EE, Onah GT, Ikuesan AJ, Bello AM. Larvicidal Potency of Some Selected Nigerian Plants against Aedes aegypti . Chemistry Proceedings. 2023; 14(1):35. https://doi.org/10.3390/ecsoc-27-16156
Chicago/Turabian StyleAjaegbu, Eze E., Gloria T. Onah, Adeniran J. Ikuesan, and Abdulrasheed M. Bello. 2023. "Larvicidal Potency of Some Selected Nigerian Plants against Aedes aegypti " Chemistry Proceedings 14, no. 1: 35. https://doi.org/10.3390/ecsoc-27-16156
APA StyleAjaegbu, E. E., Onah, G. T., Ikuesan, A. J., & Bello, A. M. (2023). Larvicidal Potency of Some Selected Nigerian Plants against Aedes aegypti . Chemistry Proceedings, 14(1), 35. https://doi.org/10.3390/ecsoc-27-16156