Development of Graphene-Doped TiO2-Nanotube Array-Based MIM-Structured Sensors and Its Application for Methanol Sensing at Room Temperature †
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Material Characterization
3.2. Methanol Sensing
3.3. Methanol Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bindra, P.; Hazra, A. Impedance behavior of n-type TiO2 nanotubes porous layer in reducing vapor ambient. Vacuum 2018, 152, 78–83. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Bindra, P.; Gangopadhyay, S.; Hazra, A. Au/TiO2 Nanotubes/Ti-based solid-state vapor sensor: Efficient sensing in resistive and capacitive modes. IEEE Trans. Electron. Devices 2018, 65, 1918–1924. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. 2008, 120, 1790–1793. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Qiu, X.; Burda, C. Novel TiO2 nanocatalysts for wastewater purification: Tapping energy from the sun. Water Sci. Technol. 2006, 54, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Bhowmik, B.; Dutta, K.; Chattopadhyay, P.P.; Bhattacharyya, P. Stoichiometry, length, and wall thickness optimization of TiO2 nanotube array for efficient alcohol sensing. ACS Appl. Mater. Interfaces 2015, 7, 9336–9348. [Google Scholar] [CrossRef] [PubMed]
- Hazra, A.; Bhattacharyya, P. Tailoring of the gas sensing performance of TiO2 nanotubes by 1-D vertical electron transport technique. IEEE Trans. Electron. Devices 2014, 61, 3483–3489. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene; Manchester Centre for Mesoscience and Nanotechnology, University of Manchester: Manchester, UK, 2009. [Google Scholar]
- Williams, G.; Seger, B.; Kamat, P.V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Lu, H.T.; Liu, J.H.; Yang, C.P.; Jing, Q.S.; Zhang, Y.X.; Yang, X.K.; Huang, K.J. Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf. B Biointerfaces 2011, 83, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Tai, H.; Guo, R.; Yuan, Z.; Liu, C.; Su, Y.; Chen, Z.; Jiang, Y. Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology. Appl. Surf. Sci. 2017, 419, 84–90. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Nematov, S.; Sberveglieri, G. Reduced graphene oxide–TiO2 nanotube composite: Comprehensive study for gas-sensing applications. ACS Appl. Nano Mater. 2018, 1, 7098–7105. [Google Scholar] [CrossRef]
- Gakhar, T.; Hazra, A. Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds. Nanoscale 2020, 12, 9082–9093. [Google Scholar] [CrossRef] [PubMed]
- Bindra, P.; Hazra, A. Selective detection of organic vapors using TiO2 nanotubes based single sensor at room temperature. Sens. Actuators B Chem. 2019, 290, 684–690. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Singhal, A.V.; Charaya, H.; Lahiri, I. General synthesis of graphene-supported bicomponent metal monoxides as alternative high-performance Li-ion anodes to binary spinel oxides. Crit. Rev. Solid State Mater. Sci. 2017, 42, 1–28. [Google Scholar]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 789. [Google Scholar] [CrossRef] [PubMed]
- Sahay, P.P.; Nath, R.K. Al-doped ZnO thin films as methanol sensors. Sens. Actuators B Chem. 2008, 134, 654–659. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gakhar, T.; Hazra, A. Development of Graphene-Doped TiO2-Nanotube Array-Based MIM-Structured Sensors and Its Application for Methanol Sensing at Room Temperature. Chem. Proc. 2021, 5, 74. https://doi.org/10.3390/CSAC2021-10620
Gakhar T, Hazra A. Development of Graphene-Doped TiO2-Nanotube Array-Based MIM-Structured Sensors and Its Application for Methanol Sensing at Room Temperature. Chemistry Proceedings. 2021; 5(1):74. https://doi.org/10.3390/CSAC2021-10620
Chicago/Turabian StyleGakhar, Teena, and Arnab Hazra. 2021. "Development of Graphene-Doped TiO2-Nanotube Array-Based MIM-Structured Sensors and Its Application for Methanol Sensing at Room Temperature" Chemistry Proceedings 5, no. 1: 74. https://doi.org/10.3390/CSAC2021-10620
APA StyleGakhar, T., & Hazra, A. (2021). Development of Graphene-Doped TiO2-Nanotube Array-Based MIM-Structured Sensors and Its Application for Methanol Sensing at Room Temperature. Chemistry Proceedings, 5(1), 74. https://doi.org/10.3390/CSAC2021-10620