Abstract
Indoor air quality is a topic of major importance for public health. Among the numerous chemical compounds that can be found in indoor air, BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) is considered one of the most toxic volatile organic compounds (VOCs). The present contribution is focused on the use of an original approach to produce nanostructured materials based on tin oxide with unexplored features, especially for gas sensors. In this work, we combine two physical vapor deposition techniques based, first, on a pulsing injection of the reactive gas during the deposition and second focused on the glancing angle deposition (GLAD) technique, which enables the structuring of various architectures. These active layers are deposited on a micro-hotplate to produce micro-chemical gas sensors for the detection of BTEX. Here, we have demonstrated the utility of using the GLAD deposition technique and the role of sputtering pressure in obtaining porous sensitive thin films. In particular, we established relationships between deposition parameters and gas sensing performances.
Supplementary Materials
The following are available online at https://www.mdpi.com/article/10.3390/CSAC2021-10548/s1.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).