Next Issue
Volume 107, ETLTC 2025
Previous Issue
Volume 105, CIC 2025
 
 
engproc-logo

Journal Browser

Journal Browser

Eng. Proc., 2025, IECB 2025

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Number of Papers: 10
Order results
Result details
Select all
Export citation of selected articles as:

Other

13 pages, 1285 KB  
Proceeding Paper
Wearable Biosensors for Glucose Monitoring in Sweat: A Patent Analysis
by Massimo Barbieri and Giuseppe Andreoni
Eng. Proc. 2025, 106(1), 1; https://doi.org/10.3390/engproc2025106001 - 12 Aug 2025
Viewed by 1624
Abstract
Metabolic diseases are increasing in relevance both in health and the economy in most countries. In this direction, if gold-standard technologies are based on blood analysis, non-invasive glucose monitoring is a relevant and great challenge that has not yet been fully resolved. Sweat [...] Read more.
Metabolic diseases are increasing in relevance both in health and the economy in most countries. In this direction, if gold-standard technologies are based on blood analysis, non-invasive glucose monitoring is a relevant and great challenge that has not yet been fully resolved. Sweat represents a more suitable medium for the non-invasive sensing and monitoring of glucose than other bodily fluids, such as saliva, tears, or urine. However, the measurement of glucose levels requires the use of highly precise and sensitive sensors, given the low glucose concentration in sweat. This paper provides an overview of the patent landscape related to wearable biosensors for the monitoring of glucose levels in sweat. Full article
Show Figures

Figure 1

12 pages, 3691 KB  
Proceeding Paper
A High-Sensitivity Electrochemical Sensor Based on Polyaniline/Sodium Alginate Composite for Pb and Cd Detection
by Ratiba Wali, Nouha Ghorbel, Ramzi Maalej and Mourad Arous
Eng. Proc. 2025, 106(1), 2; https://doi.org/10.3390/engproc2025106002 - 12 Aug 2025
Viewed by 244
Abstract
Water pollution remains one of the most pressing global environmental challenges, posing significant threats to ecosystems and human health. Among the various pollutants, heavy metal contamination is particularly concerning, even at trace concentrations, due to its bioaccumulative and toxic effects. The Efficient detection [...] Read more.
Water pollution remains one of the most pressing global environmental challenges, posing significant threats to ecosystems and human health. Among the various pollutants, heavy metal contamination is particularly concerning, even at trace concentrations, due to its bioaccumulative and toxic effects. The Efficient detection of heavy metals is therefore essential for effective environmental monitoring and public health protection. In this study, we present the development of an advanced electrochemical sensor based on polyaniline (PANI) incorporated into a sodium alginate (SA) matrix. The PANI/SA composite was synthesized via in-situ polymerization, improving both the material’s electrical conductivity and mechanical stability. The Scanning Electron microscopy (SEM) analysis confirmed a porous, interconnected structure favorable for electrochemical activity. Excellent sensitivity, stability, selectivity and rapid response times for Pb2+ and Cd2+ detection were demonstrated by the sensor that was created by fusing the high conductivity of PANI with the biocompatibility and gel-like qualities of SA. Notably, the sensor modified with 10 µL of PANI/SA suspension achieved a sensitivity of 3.183 µA µM−1 cm−2 for Cd2+ detection, representing an eightfold increase compared to the sensor using 5 µL (0.394 µA µM−1 cm−2). These results highlight the potential of the PANI/SA-based sensor for real-time and low-level heavy metal ion monitoring in environmental applications. Full article
Show Figures

Figure 1

12 pages, 1838 KB  
Proceeding Paper
Edge IoT-Enabled Cyber–Physical Systems with Paper-Based Biosensors and Temporal Convolutional Networks for Real-Time Water Contamination Monitoring
by Jothi Akshya, Munusamy Sundarrajan and Rajesh Kumar Dhanaraj
Eng. Proc. 2025, 106(1), 3; https://doi.org/10.3390/engproc2025106003 - 15 Aug 2025
Viewed by 346
Abstract
Water pollution poses serious threats to public health and the environment, therefore requiring efficient and scalable monitoring solutions. This paper presents a cyber–physical system (CPS) that integrates paper-based biosensors with an edge IoT architecture and long-range wide area network (LoRaWAN) for real-time assessment [...] Read more.
Water pollution poses serious threats to public health and the environment, therefore requiring efficient and scalable monitoring solutions. This paper presents a cyber–physical system (CPS) that integrates paper-based biosensors with an edge IoT architecture and long-range wide area network (LoRaWAN) for real-time assessment of water quality. The biosensors detect pollutants such as arsenic, lead, and nitrates with a detection limit of 0.5 ppb. The system proposed was compared with existing LSTM systems based on two performance metrics: detection accuracy and latency. Paper-based biosensors were fabricated using silver nanoparticle-functionalized substrates to show high sensitivity and low-cost pollutant detection. TCN algorithm deployment at the edge allows for real-time processing for time-series data analysis due to its high accuracy and low latency properties compared with LSTM models, which were mainly chosen due to their usage in most applications dealing with time-series-based analysis. Experimentation was carried out by deploying the developed CPS in controlled environments, simulating pollutants at different levels, and executing the models to test their accuracy in detecting pollutants and the latency of data processing. The TCN framework achieved a detection accuracy of 98.7%, which surpassed LSTM by 92.4%. In addition, TCN reduced latency in processing by 38% to enable fast data analysis and decision making. LoRaWAN allowed for perfect packet transmission of up to 15 km, while the loss rate stayed as low as 2.1%. These results establish the proposed CPS as reliable, efficient, and scalable for real-time water contamination monitoring. Thus, this research introduces the integration of paper-based biosensors with advanced computational frameworks. Full article
Show Figures

Figure 1

8 pages, 1562 KB  
Proceeding Paper
Polymeric Ionic Liquids as Effective Biosensor Components
by Dmitry Kultin, Olga Lebedeva, Irina Kuznetsova and Leonid Kustov
Eng. Proc. 2025, 106(1), 4; https://doi.org/10.3390/engproc2025106004 - 19 Aug 2025
Viewed by 359
Abstract
The unique properties present great prospects for polymeric ionic liquids (PILs) research in these areas, where progress and breakthrough technologies can be expected in the coming years. This brief review examines the latest work (2024–2025) and the prospects for using PILs as an [...] Read more.
The unique properties present great prospects for polymeric ionic liquids (PILs) research in these areas, where progress and breakthrough technologies can be expected in the coming years. This brief review examines the latest work (2024–2025) and the prospects for using PILs as an effective component of sensor-related devices for medical or biological applications. Potentially, the PILs-based sensors can detect various movements in real time, which are necessary for high-performance wearable sensor platforms. The artificial electronic skin demonstrates high potential not only as a recording of body signals, but also as an effective wound dressing. The polymer actuators with PILs are indispensable in many applications. Full article
Show Figures

Figure 1

21 pages, 928 KB  
Proceeding Paper
Advances in Enzyme-Based Biosensors: Emerging Trends and Applications
by Kerolina Sonowal, Partha Protim Borthakur and Kalyani Pathak
Eng. Proc. 2025, 106(1), 5; https://doi.org/10.3390/engproc2025106005 - 29 Aug 2025
Viewed by 555
Abstract
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, [...] Read more.
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, selective, and portable solutions for real-time analysis. This review explores the key components, detection mechanisms, applications, and future trends in enzyme-based biosensors. Artificial enzymes, such as nanozymes, play a crucial role in enhancing enzyme-based biosensors by mimicking natural enzyme activity while offering improved stability, cost-effectiveness, and scalability. Their integration can significantly boost sensor performance by increasing the catalytic efficiency and durability. Additionally, lab-on-a-chip and microfluidic devices enable the miniaturization of biosensors, allowing for the development of compact, portable devices that require minimal sample volumes for complex diagnostic tests. The functionality of enzyme-based biosensors is built on three essential components: enzymes as biocatalysts, transducers, and immobilization techniques. Enzymes serve as the biological recognition elements, catalyzing specific reactions with target molecules to produce detectable signals. Transducers, including electrochemical, optical, thermal, and mass-sensitive types, convert these biochemical reactions into measurable outputs. Effective immobilization strategies, such as physical adsorption, covalent bonding, and entrapment, enhance the enzyme stability and reusability, enabling consistent performance. In medical diagnostics, they are widely used for glucose monitoring, cholesterol detection, and biomarker identification. Environmental monitoring benefits from these biosensors by detecting pollutants like pesticides, heavy metals, and nerve agents. The food industry employs them for quality control and contamination monitoring. Their advantages include high sensitivity, rapid response times, cost-effectiveness, and adaptability to field applications. Enzyme-based biosensors face challenges such as enzyme instability, interference from biological matrices, and limited operational lifespans. Addressing these issues involves innovations like the use of synthetic enzymes, advanced immobilization techniques, and the integration of nanomaterials, such as graphene and carbon nanotubes. These advancements enhance the enzyme stability, improve sensitivity, and reduce detection limits, making the technology more robust and scalable. Full article
Show Figures

Figure 1

18 pages, 1181 KB  
Proceeding Paper
Advancements in Optical Biosensor Technology for Food Safety and Quality Assurance
by Pabina Rani Boro, Partha Protim Borthakur and Elora Baruah
Eng. Proc. 2025, 106(1), 6; https://doi.org/10.3390/engproc2025106006 - 9 Sep 2025
Viewed by 702
Abstract
Optical biosensors have emerged as a transformative technology for food safety monitoring. These devices combine biorecognition molecules with advanced optical transducers, enabling the detection of a wide array of food contaminants, including pathogens, toxins, pesticides, and antibiotic residues. This review comprehensively explores the [...] Read more.
Optical biosensors have emerged as a transformative technology for food safety monitoring. These devices combine biorecognition molecules with advanced optical transducers, enabling the detection of a wide array of food contaminants, including pathogens, toxins, pesticides, and antibiotic residues. This review comprehensively explores the principles, advancements, applications, and future trends of optical biosensors in ensuring food safety. The key advantages of optical biosensors, such as high sensitivity to trace contaminants, fast response times, and portability, make them an attractive alternative to traditional analytical methods. Types of optical biosensors discussed include surface plasmon resonance (SPR), interferometric, fluorescence and chemiluminescence, and colorimetric biosensors. SPR biosensors stand out for their real-time, label-free analysis of foodborne pathogens and contaminants, while fluorescence and chemiluminescence biosensors offer exceptional sensitivity for detecting low levels of toxins. Interferometric and colorimetric biosensors, characterized by their portability and visual signal output, are well-suited for field-based applications. Biosensors have proven invaluable in monitoring heavy metals, pesticide residues, and antibiotic contaminants, ensuring compliance with stringent food safety standards. The integration of nanotechnology has further enhanced the performance of optical biosensors, with nanomaterials such as quantum dots and nanoparticles enabling ultra-sensitive detection and signal amplification. Optical biosensors represent a vital advancement in the field of food safety, addressing critical public health concerns through their rapid and reliable detection capabilities. Continued interdisciplinary efforts in nanotechnology, material science, and device engineering are poised to further expand their applications, making them indispensable tools for safeguarding global food supply chains. Full article
Show Figures

Figure 1

12 pages, 1074 KB  
Proceeding Paper
Multiplexed Quantification of Soil Nutrients Using an AI-Enhanced and Low-Cost Impedimetric Sensor
by Antonio Ruiz-Gonzalez
Eng. Proc. 2025, 106(1), 7; https://doi.org/10.3390/engproc2025106007 - 10 Sep 2025
Viewed by 334
Abstract
Soil nutrient monitoring is essential to achieving UN development goals and meeting the projected 70% increase in agricultural production from 2009 values by 2050. This study presents a novel, low-cost impedimetric device for the direct and simultaneous measurement of soil ion bioavailability (Na [...] Read more.
Soil nutrient monitoring is essential to achieving UN development goals and meeting the projected 70% increase in agricultural production from 2009 values by 2050. This study presents a novel, low-cost impedimetric device for the direct and simultaneous measurement of soil ion bioavailability (Na+, K+), temperature, and humidity. Designed for Arduino integration, the device offers scalable, cost-effective deployment. Different AI algorithms were trained to interpret signals (Support Vector Machine, Random Forest, XBoost), enabling real-time monitoring. Best performance was achieved for XBoost. Calibration was first performed using solutions of known NaCl and KCl concentrations to establish impedance patterns, and benchmarking against fitted Cole model outputs demonstrated high predictive accuracy (R2 = 0.99 for both Na+ and K+). The system operated across a 1–100 kHz impedance range with environmental resolution of ±0.5 °C, ±3% RH, and ±1 hPa, acquiring data every 10 min during in vivo trials. This affordable, AI-enhanced platform has the potential to empower smallholder farmers by reducing reliance on costly laboratory analyses, enabling precise fertiliser application, and integrating seamlessly into smart farming platforms for sustainable yield improvement. Full article
Show Figures

Figure 1

22 pages, 1231 KB  
Proceeding Paper
Emerging Trends in Paper-Based Electrochemical Biosensors for Healthcare Applications
by Aparoop Das, Partha Protim Borthakur, Dibyajyoti Das, Jon Jyoti Sahariah, Parimita Kalita and Kalyani Pathak
Eng. Proc. 2025, 106(1), 8; https://doi.org/10.3390/engproc2025106008 - 11 Sep 2025
Viewed by 581
Abstract
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary [...] Read more.
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary action, which make it an ideal candidate for low-cost, functional, and reliable diagnostic devices. The simplicity and cost-effectiveness of paper-based biosensors make them especially suitable for point-of-care (POC) applications, particularly in resource-limited settings where traditional diagnostic tools may be inaccessible. Their lightweight nature and ease of operation allow non-specialized users to perform diagnostic tests without the need for complex laboratory equipment, making them suitable for emergency, field, and remote applications. Technological advancements in paper-based biosensors have significantly enhanced their capabilities. Integration with microfluidic systems has improved fluid handling and reagent storage, resulting in enhanced sensor performance, including greater sensitivity and specificity for target biomarkers. The use of nanomaterials in electrode fabrication, such as reduced graphene oxide and gold nanoparticles, has further elevated their sensitivity, allowing for the precise detection of low-concentration biomarkers. Moreover, the development of multiplexed sensor arrays has enabled the simultaneous detection of multiple biomarkers from a single sample, facilitating comprehensive and rapid diagnostics in clinical settings. These biosensors have found applications in diagnosing a wide range of diseases, including infectious diseases, cancer, and metabolic disorders. They are also effective in genetic analysis and metabolic monitoring, such as tracking glucose, lactate, and uric acid levels, which are crucial for managing chronic conditions like diabetes and kidney diseases. In this review, the latest advancements in paper-based electrochemical biosensors are explored, with a focus on their applications, technological innovations, challenges, and future directions. Full article
Show Figures

Figure 1

16 pages, 1585 KB  
Proceeding Paper
Design of Pentagon-Shaped THz Photonic Crystal Fiber Biosensor for Early Detection of Crop Pathogens Using Decision Cascaded 3D Return Dilated Secretary-Bird Aligned Convolutional Transformer Network
by Sreemathy Jayaprakash, Prasath Nithiyanandam and Rajesh Kumar Dhanaraj
Eng. Proc. 2025, 106(1), 9; https://doi.org/10.3390/engproc2025106009 - 12 Sep 2025
Viewed by 116
Abstract
Crop pathogens threaten global agriculture by causing severe yield and economic losses. Conventional detection methods are often slow and inaccurate, limiting timely intervention. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF) biosensor, optimized with the decision cascaded 3D return dilated [...] Read more.
Crop pathogens threaten global agriculture by causing severe yield and economic losses. Conventional detection methods are often slow and inaccurate, limiting timely intervention. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF) biosensor, optimized with the decision cascaded 3D return dilated secretary-bird aligned convolutional transformer network (DC3D-SBA-CTN). The biosensor is designed to detect a broad spectrum of pathogens, including fungi (e.g., Fusarium spp.) and bacteria (e.g., Xanthomonas spp.), by identifying their unique refractive index signatures. Integrating advanced neural networks and optimization algorithms, the biosensor achieves a detection accuracy of 99.87%, precision of 99.65%, sensitivity of 99.77%, and specificity of 99.83%, as validated by a 5-fold cross-validation protocol. It offers high sensitivity (up to 7340 RIU−1), low signal loss, and robust performance against morphological variations, making it adaptable for diverse agricultural settings. This innovation enables rapid, precise monitoring of crop pathogens, revolutionizing plant disease management. Full article
Show Figures

Figure 1

8 pages, 564 KB  
Proceeding Paper
Smartphone-Based Biosensors: Current Trends, Challenges, and Future Prospects
by Adinife Patrick Azodo, Tochukwu Canice Mezue and Idama Omokaro
Eng. Proc. 2025, 106(1), 10; https://doi.org/10.3390/engproc2025106010 - 18 Sep 2025
Viewed by 275
Abstract
Smartphone-based biosensors are emerging as transformative tools for personalized medicine and real-time health monitoring. This study critically examines recent advancements in mass-sensitive, optical, and electrochemical biosensing technologies, highlighting their application in detecting disease biomarkers. Beyond a summary of technological progress, this paper presents [...] Read more.
Smartphone-based biosensors are emerging as transformative tools for personalized medicine and real-time health monitoring. This study critically examines recent advancements in mass-sensitive, optical, and electrochemical biosensing technologies, highlighting their application in detecting disease biomarkers. Beyond a summary of technological progress, this paper presents a strategic roadmap that addresses persistent barriers to clinical deployment, including sensor calibration inconsistencies, lack of interoperability, and limited scalability. The proposed framework leverages explainable artificial intelligence (AI) for enhanced diagnostic interpretation and outlines pathways for low-cost, scalable manufacturing using advanced nanomaterials. By bridging technical innovation with practical implementation, this work contributes a replicable model for developing equitable, reliable smartphone biosensors capable of expanding access to preventive and individualized healthcare worldwide. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop