Analysis of AgRED Performance in LR-WPAN Dense Ad-Hoc Networks †
Abstract
:1. Introduction
2. Related Work
3. Methodology
4. Simulation Parameters
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, T.; Qamar, F.; Hindia, M.N.; Hassan, R.; Ahmed, I.; Aslam, M.I. Performance analysis of ad hoc on-demand distance vector routing protocol for MANET. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 194–199. [Google Scholar]
- Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and bluetooth wireless technologies used in home automation. In Proceedings of the 2019 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June 2019; pp. 1–5. [Google Scholar]
- Hindia, M.N.; Qamar, F.; Abbas, T.; Dimyati, K.; Abu Talip, M.S.; Amiri, I.S. Interference cancelation for high-density fifth-generation relaying network using stochastic geometrical approach. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719855879. [Google Scholar] [CrossRef]
- Molisch, A.F.; Balakrishnan, K.; Chong, C.-C.; Emami, S.; Fort, A.; Karedal, J.; Kunisch, J.; Schantz, H.; Schuster, U.; Siwiak, K. IEEE 802.15. 4a channel model-final report. IEEE P802 2004, 15, 0662. [Google Scholar]
- Ramonet, A.G.; Noguchi, T. IEEE 802.15. 4 now and then: Evolution of the LR-WPAN standard. In Proceedings of the 2020 22nd International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 16–19 February 2020; pp. 1198–1210. [Google Scholar]
- Jafri, S.T.A.; Ahmed, I.; Ali, S. Queue-Buffer Optimization Based on Aggressive Random Early Detection in Massive NB-IoT MANET for 5G Applications. Electronics 2022, 11, 2955. [Google Scholar] [CrossRef]
- Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1993, 1, 397–413. [Google Scholar] [CrossRef]
- Pan, R.; Natarajan, P.; Baker, F.; White, G. Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem; IETF: Fremont, CA, USA, 2017. [Google Scholar]
- Nichols, K.; Jacobson, V.; McGregor, A.; Iyengar, J. Controlled Delay Active Queue Management; IETF: Fremont, CA, USA, 2018. [Google Scholar]
- Hoeiland-Joergensen, T.; McKenney, P.; Taht, D.; Gettys, J.; Dumazet, E. The Flow Queue Codel Packet Scheduler and Active Queue Management Algorithm; IETF: Fremont, CA, USA, 2018. [Google Scholar]
- Kua, J.; Nguyen, S.H.; Armitage, G.; Branch, P. Using active queue management to assist IoT application flows in home broadband networks. IEEE Internet Things J. 2017, 4, 1399–1407. [Google Scholar] [CrossRef]
- Kim, M.; Jaseemuddin, M.; Anpalagan, A. Deep reinforcement learning based active queue management for iot networks. J. Netw. Syst. Manag. 2021, 29, 34. [Google Scholar] [CrossRef]
- Koo, J.; Song, B.; Chung, K.; Lee, H.; Kahng, H. MRED: A new approach to random early detection. In Proceedings of the 15th International Conference on Information Networking, Beppu City, Japan, 31 January–2 February 2001; pp. 347–352. [Google Scholar]
- Jafri, S.T.A.; Ahmed, I.; Ali, S.; Yahaya, J.; Qamar, F.; Abdullah, Z.H. Split Hop Penalty for Transmission Quality Metrics in a Better Approach to Mobile Ad Hoc Networking (BATMAN) for IoT-Based MANET. Symmetry 2023, 15, 969. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
MAC protocol | IEEE 802.15.4 |
Node data rate | 250 Kbps (LR-WPAN) |
Communication range | 100 m (BB-WSD2C21150 sensor) |
Area | 500 m × 500 m |
AQM techniques | RED, AgRED |
Routing scheme | AODV |
Payload | 200, 400, 600, 1000 (bytes) |
Packet send interval | 5, 10, 50, 100 (ms) |
Transport protocol | UDP |
Node speed average | 3 m/s |
Queue capacity | 100 |
Maximum probability Pmax | 0.02 |
Minimum threshold | 20 packets |
Maximum threshold | 100 packets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafri, S.T.A.; Ahmed, I.; Ali, S.; Qamar, F. Analysis of AgRED Performance in LR-WPAN Dense Ad-Hoc Networks. Eng. Proc. 2023, 32, 5. https://doi.org/10.3390/engproc2023032005
Jafri STA, Ahmed I, Ali S, Qamar F. Analysis of AgRED Performance in LR-WPAN Dense Ad-Hoc Networks. Engineering Proceedings. 2023; 32(1):5. https://doi.org/10.3390/engproc2023032005
Chicago/Turabian StyleJafri, Syed Talib Abbas, Irfan Ahmed, Sundus Ali, and Faizan Qamar. 2023. "Analysis of AgRED Performance in LR-WPAN Dense Ad-Hoc Networks" Engineering Proceedings 32, no. 1: 5. https://doi.org/10.3390/engproc2023032005
APA StyleJafri, S. T. A., Ahmed, I., Ali, S., & Qamar, F. (2023). Analysis of AgRED Performance in LR-WPAN Dense Ad-Hoc Networks. Engineering Proceedings, 32(1), 5. https://doi.org/10.3390/engproc2023032005