Synthesis of Fused Isoxazoles: A Comprehensive Review †
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Mo, J.; Lin, H.Z.; Chen, Y.; Sun, H.P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem. 2018, 26, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Sun, Q.; Chen, W.; Bai, Y.; Hu, D.; Xie, X. The neuroprotective mechanisms of ginkgolides and bilobalide in cerebral ischemic injury: A literature review. Mol. Med. 2019, 25, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, O. Pilocarpine Alkaloid A Review. EAS J. Pharm. Pharmacol. 2020, 2, 161–164. [Google Scholar]
- Cakmak, M.; Mayer, P.; Trauner, D. An efficient synthesis of loline alkaloids. Nat. Chem. 2011, 3, 543–545. [Google Scholar] [CrossRef]
- Chen, Y.F.; Lawal, B.; Huang, L.J.; Kuo, S.C.; Sumitra, M.R.; Mokgautsi, N.; Lin, H.Y.; Huang, H.S. In Vitro and In Silico Biological Studies of 4-Phenyl-2-quinolone (4-PQ) Derivatives as Anticancer Agents. Molecules 2023, 28, 555–578. [Google Scholar] [CrossRef]
- Darrigrand, R.; Pierson, A.; Rouillon, M.; Renko, D.; Boulpicante, M.; Bouyssié, D.; Mouton-Barbosa, E.; Marcoux, J.; Garcia, C.; Ghosh, M.; et al. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Commun. Biol. 2021, 4, 269–282. [Google Scholar] [CrossRef]
- Ali Dondas, H.; Ronal, G.; Maria, H.; Jasothra, M.W.; Anthony, T.; Peter, K. X=Y-ZH systems as potential 1,3-dipoles. Part 50: Phenylselenyl halide induced formation of cyclic nitrones from alkenyl oximes. Tetrahedron 2000, 56, 10087–10096. [Google Scholar] [CrossRef]
- Abutariq, T.; Alexandra, M.Z.S.; George, W.W. Reactions of an imidazo [4,5-c] isoxazole-6-carboxylate with dimethyl acetylene dicarboxylate: Formation of the first example of a [1,4] diazepino [2,3-c] isoxazole. Tetrahedron 2000, 41, 9319–9321. [Google Scholar]
- Venkatapuram, P.; Boggu, J.M.R.; Akula, B.; Katta, V.R.; Dandu, B.R. Synthesis of some fused pyrazole and isoxazole. Molecules 2000, 5, 1281–1286. [Google Scholar]
- Tommoo, M.; Jeffrey, W.B.; Yoshifumi, H.; Keisuke, S. Molecular sieve (MS4A) promoted cyclo-condensation of hindered, aromatic nitrile oxides and cyclic diketones under mild conditions. Synlett 2003, 11, 1746–1748. [Google Scholar]
- Jeffrey, W.B.; Yoshifumi, H.; Tomoo, M.; Keisuke, S. Facile construction and divergent transformation of polycyclic isoxazoles: Direct access to polyketide. Org. Lett. 2003, 5, 391–394. [Google Scholar]
- Irini, A.Z.; Vijaya, G.; Joel, D.M.; Stevan, W.D. Synthesis of novel fused isoxazoles and isooxazolines by sequential Ugi/INOC reactions. Tetrahedron Lett. 2004, 45, 3421–3423. [Google Scholar]
- Padmavathi, V.; Sharmia, K.A.; Baliah, A.; Reddy, S.; Reddy, B.D. Cyclohexanone carboxylates. A versatile source for fused isoxazoles and pyrazoles. Synth. Commun. 2006, 31, 2119–2126. [Google Scholar] [CrossRef]
- Sarvesh, K.; Hiriyakkanavar, I.; Hiriyakkanavar, J. Heteroaromatic annulation studies on 10,11-dihydro-11-[bis(methylthio)methylene] dibenzoxepin-10-one: A facile access to novel dibenzenzoxepin [4,5]-fused heterocycles. Tetrahedron 2007, 63, 10067–10076. [Google Scholar]
- Karthikeyan, K.T.; Veenus Seelan, K.G.; Lalitha, P.T.P. Synthesis and antinociceptive activity of pyrazolyl isoxazolines and pyrazolyl isoxazoles. Bioorg. Med. Chem. Lett. 2009, 19, 3370–3373. [Google Scholar] [CrossRef]
- Dabholakar, V.V.; Ansari, F.Y. Synthesis, and characterization of selected fused isoxazole and pyrazole derivatives and their antimicrobial activity. J. Serb. Chem. Soc. 2009, 74, 1219–1228. [Google Scholar] [CrossRef]
- Chetan, M.B.; Sachin, L.P.; Sandeep, K.C.; Krantisinha, R.; Kumar, G.P.; Santhosh, P. Synthesis of cytotoxic studies of newer 3- (1-benzofuran-2-Yl)-5- (substituted aryl) isoxazoles. Res. J. Pharm. Technol. 2011, 4, 247–251. [Google Scholar]
- Inga, C. Intramolecular iodine -mediated oxygen transfer from nitro groups to C=C bonds. Eur. J. Org. Chem. 2012, 14, 2766–2773. [Google Scholar]
- Mariappan, B.; Kasi, P.; Penugonda, R. Isoxazoles incorporated N -substituted decahydroquinolines: A precursor to the next generation antimicrobial drug. Eur. J. Med. Chem. 2012, 47, 608–614. [Google Scholar]
- Rajender, P.S.; Sridevi, G.; Reddy, K.K. Synthesis of novel isoxazole-fused heterocycles. Synth. Commun. 2012, 42, 2191–2200. [Google Scholar] [CrossRef]
- Yang, L.I.; Liangyu, X.U.; Wentao, G.A.O. Facile synthesis of 5- bromotropono[c]-fused pyrazoles and isoxazoles. Turk. J. Chem. 2014, 38, 470–476. [Google Scholar]
- Masashi, S.; Kazuhiro, T.; Hiroaki, S. Pallidum-catalyzed direct C-H arylation of isoxazoles at the 5-position. Angew. Chem. 2015, 127, 9708–9712. [Google Scholar]
- Chen, W.C.; Kavala, V.; Shih, Y.H.; Wang, Y.H.; Kuo, C.W.; Yang, T.H.; Huang, C.Y.; Chiu, H.H.; Yao, C.F. Synthesis of bicyclic isoxazoles and isoxazolines via intramolecular nitrile oxide cycloaddition. Molecules 2015, 20, 10910–10927. [Google Scholar] [CrossRef]
- Shakil, N.A.; Cut, N.; Chinpio, C.; Gene, H.L. Multicomponent coupling reaction and intramolecular nitrile oxide -alkyne cycloaddition towards isoxazole [3,4]-pyrrolizines. Asian J. Org. Chem. 2016, 5, 1015–1026. [Google Scholar]
- Victoria, V.G.; Irina, A.T.; Vladimir, O.N.; Natalia, V.G.; Alexei, V.N.; Maxim, V.D.; Irena, B.I. Preparation of novel ring—A fused azole derivatives of botulin and evaluation of their toxicity. Eur. J. Med. Chem. 2017, 125, 629–639. [Google Scholar]
- Xiao, W.; Yang, Q.-Q.; Chen, Z.; Ouyang, Q.; Du, W.; Chen, Y.-C. Regio- and diasterodivergent [4+2] cycloadditions with cyclic 2,4-dienones. Org. Lett. 2018, 20, 236–239. [Google Scholar] [CrossRef]
- Mansour, D.K.; Pakoupati, B.; Julian, G.; Laurent, E.K. Metal -free addition of boronic acids to silylnitronates. Synlett 2020, 31A-E, 1–8. [Google Scholar]
- Antonov, A.S.; Tupikina, E.Y.; Karpov, V.V.; Mulloyarova, V.V.; Bardakov, V.G. Sterically Facilitated Intramolecular Nucleophilic NMe2 Group Substitution in the Synthesis of Fused Isoxazoles: Theoretical Study. Molecules 2020, 25, 5977. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallik, N.N.; Manasa, C.; Basavanna, V.; Shanthakumar, D.C.; Ningaiah, S.; Lingegowda, N.S. Synthesis of Fused Isoxazoles: A Comprehensive Review. Eng. Proc. 2023, 59, 222. https://doi.org/10.3390/engproc2023059222
Mallik NN, Manasa C, Basavanna V, Shanthakumar DC, Ningaiah S, Lingegowda NS. Synthesis of Fused Isoxazoles: A Comprehensive Review. Engineering Proceedings. 2023; 59(1):222. https://doi.org/10.3390/engproc2023059222
Chicago/Turabian StyleMallik, Niveditha N., Chandramouli Manasa, Vrushabendra Basavanna, Dileep C. Shanthakumar, Srikantamurthy Ningaiah, and Nagarakere S. Lingegowda. 2023. "Synthesis of Fused Isoxazoles: A Comprehensive Review" Engineering Proceedings 59, no. 1: 222. https://doi.org/10.3390/engproc2023059222
APA StyleMallik, N. N., Manasa, C., Basavanna, V., Shanthakumar, D. C., Ningaiah, S., & Lingegowda, N. S. (2023). Synthesis of Fused Isoxazoles: A Comprehensive Review. Engineering Proceedings, 59(1), 222. https://doi.org/10.3390/engproc2023059222