A Multibody Mathematical Model to Simulate the Dynamic Behavior of Aerial Work Platforms Using Python †
Abstract
:1. Introduction
2. Test Case
3. Non-Linearity
3.1. Wheel Model
3.2. Hydraulic Cylinders Model
3.3. Contact Model
4. Simulation Input
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nikravesh, P.E. Planar Multibody Dynamics: Formulation, Programming with MATLAB®, and Applications, 2nd ed.; CRC Press, Taylor & Francis: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019. [Google Scholar]
- Shabana, A.A. Computational Dynamics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Giannopoulos, F.; Rao, A.K. Dynamic Loads on Suspension Components Using Mechanisms Programs. Technical Report; SAE Technical Paper. 1981. Available online: https://www.sae.org/publications/technical-papers/content/811307/ (accessed on 5 February 2025).
- Jazar, R.N. Vehicle Dynamics; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Feng, H.; Du, Q.; Huang, Y.; Chi, Y. Modeling Study on Stiffness Characteristics of Hydraulic Cylinder under Multi-Factors. Stroj. Vestn.—J. Mech. Eng. 2017, 63, 447. [Google Scholar] [CrossRef]
- Grioli, G. Lezioni di Meccanica Razionale; Commissionaria Libreria Universitaria di G. Randi: Padua, Italy, 1951. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cangi, G.; Angeletti, A.; Palmieri, M.; Cianetti, F. A Multibody Mathematical Model to Simulate the Dynamic Behavior of Aerial Work Platforms Using Python. Eng. Proc. 2025, 85, 36. https://doi.org/10.3390/engproc2025085036
Cangi G, Angeletti A, Palmieri M, Cianetti F. A Multibody Mathematical Model to Simulate the Dynamic Behavior of Aerial Work Platforms Using Python. Engineering Proceedings. 2025; 85(1):36. https://doi.org/10.3390/engproc2025085036
Chicago/Turabian StyleCangi, Giacomo, Alessandro Angeletti, Massimiliano Palmieri, and Filippo Cianetti. 2025. "A Multibody Mathematical Model to Simulate the Dynamic Behavior of Aerial Work Platforms Using Python" Engineering Proceedings 85, no. 1: 36. https://doi.org/10.3390/engproc2025085036
APA StyleCangi, G., Angeletti, A., Palmieri, M., & Cianetti, F. (2025). A Multibody Mathematical Model to Simulate the Dynamic Behavior of Aerial Work Platforms Using Python. Engineering Proceedings, 85(1), 36. https://doi.org/10.3390/engproc2025085036