QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phenotypic Evaluations and Stress Application
2.2. Applying Salinity Stress
2.3. Applying Drought Stress
2.4. Genotype Evaluations
2.5. Linkage Map Construction and QTL Analysis
3. Results
3.1. Phenotypic Distribution and Relationships between Traits
3.2. Preparation of Linkage Maps
3.3. Mapping Quantitative Traits under Normal Condition
3.4. Mapping of Quantitative Traits under Drought Stress Condition
3.5. Mapping of the Quantitative Traits under Salinity Stress Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baum, M.; Grando, S.; Backes, G.; Jahoor, A.; Sabbagh, A.; Ceccarelli, S. QTLs for agronomic traits in the mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor. Appl. Genet. 2003, 107, 1215–1225. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plant: An integrated view from breeding to genomics. Field Crops Res. 2008, 115, 1–14. [Google Scholar] [CrossRef]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stressed: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef]
- Chen, Z.; Shabala, S.; Mendham, N.; Newman, I.; Zhang, G.; Zhou, M. Combining ability of salinity tolerance on the basis of NaCl-induced K flux from roots of barley. Crop Sci. 2008, 48, 1382–1388. [Google Scholar] [CrossRef]
- Richards, R. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R.; Arora, U. Osmopriming of spinach (Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. Seed Sci. Technol. 2010, 38, 36–48. [Google Scholar] [CrossRef]
- Thabet, S.G.; Moursi, Y.S.; Karam, M.A.; Graner, A.; Alqudah, A.M. Genetic basis of drought tolerance during seed germination in barley. PLoS ONE 2018, 13, e0206682. [Google Scholar] [CrossRef]
- Wehner, G.G.; Balko, C.C.; Enders, M.M.; Humbeck, K.K.; Ordon, F.F. Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol. 2015, 15, 125. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Ghani, A.H.; Sharma, R.; Wabila, C.; Dhanagond, S.; Owais, S.J.; Duwayri, M.A.; Al-Dalain, S.A.; Klukas, C.; Chen, D.; Lübberstedt, T. Genome-wide association mapping in adiverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC Plant Biol. 2019, 19, 216. [Google Scholar] [CrossRef]
- Hittalmani, S.; Huang, N.; Courtois, B.; Venuprasad, R.; Shashidhar, H.; Zhuang, J.; Zheng, K.; Liu, G.; Wang, G.; Sidhu, J. Identification of QTL for growth-and grain yield-related traits in rice across nine locations of Asia. Theor. Appl. Genet. 2003, 107, 679–690. [Google Scholar] [CrossRef]
- Muchow, R.; Sinclair, T. Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L.) Moench. Plant Cell Environ. 1989, 12, 425–431. [Google Scholar] [CrossRef]
- Sabouri, A.; Nasiri, E.; Esfahani, M.; Forghani, A. SSR marker-based study of the effects of genomic regions on Fe, Mn, Zn, and protein content in a rice diversity panel. J. Plant Biochem. Biotechnol. 2021, 30, 504–514. [Google Scholar] [CrossRef]
- Sabouri, A.; Alinezhad, F.; Mousanejad, S. Association analysis using SSR markers and identification of resistant aerobic and Iranian rice cultivars to blast disease. Eur. J. Plant Pathol. 2020, 158, 561–570. [Google Scholar] [CrossRef]
- Khapilina, O.; Turzhanova, A.; Danilova, A.; Tumenbayeva, A.; Shevtsov, V.; Kotukhov, Y.; Kalendar, R. Primer binding site (PBS) profiling of genetic dversity of natural populations of endemic species Allium ledebourianum Schult. BioTech 2021, 10, 23. [Google Scholar] [CrossRef]
- Shirmohammadli, S.; Sabouri, H.; Ahangar, L.; Ebadi, A.; Sajjadi, S. Genetic diversity and association analysis of rice genotypes for grain physical quality using iPBS, IRAP, and ISSR markers. J. Genet. Res. 2018, 4, 122–129. [Google Scholar] [CrossRef]
- Takehisa, H.; Shimodate, T.; Fukuta, Y.; Ueda, T.; Yano, M.; Yamaya, T.; Kameya, T.; Sato, T. Identification of quantitative trait loci for plant growth of rice in paddy field flooded with salt water. Field Crops Res. 2004, 89, 85–95. [Google Scholar] [CrossRef]
- Haq, T.U.; Akhtar, J.; Gorham, J.; Khalid, M. Genetic Mapping of QTLs, Controlling Shoot Fresh and Dry Weight under Salt Stress in Rice Cross between CO39 × Moroberekan. Pak. J. Bot. 2008, 40, 2369–2381. Available online: https://www.researchgate.net/publication/266212773 (accessed on 26 May 2022).
- Rabiei, B.; Mardani, K.H.; Sabouri, H.; Sabouri, A. The effect of rice chromosome 1 on traits associated with drought and salinity tolerance at germination and seedling stages. Seed Plant J. 2014, 30, 1–16. [Google Scholar]
- Chloupek, O.; Dostál, V.; Středa, T.; Psota, V.; Dvořáčková, O. Drought tolerance of barley varieties in relation to their root system size. Plant Breed. 2010, 129, 630–636. [Google Scholar] [CrossRef]
- Reinert, S.; Kortz, A.; Léon, J.; Naz, A.A. Genome-wide association mapping in the global diversity set reveals new QTL controlling root system and related shoot variation in barley. Front. Plant Sci. 2016, 7, 1061. [Google Scholar] [CrossRef] [Green Version]
- Robinson, H.; Hickey, L.; Richard, C.; Mace, E.; Kelly, A.; Borrell, A.; Franckowiak, J.; Fox, G. Genomic regions influencing seminal root traits in barley. Plant Genome 2016, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Tarawneh, R.A. Mapping and Identifying Genes for Drought Tolerance in Barley (Hordeum vulgare L.). Ph.D. Thesis, Der Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, 2020. [Google Scholar]
- Fakheri, B.A.; Aghnoum, R.; Nezhad, N.M.; Ataei, R. GWAS analysis in spring barley (Hordeum vulgare L.) for morphological traits exposed to drought. PLoS ONE 2018, 13, e0204952. [Google Scholar]
- Hansen, L.; von Wettstein-Knowles, P. The barley genes Acl1 and Acl3 encoding acyl carrier proteins I and III are located on different chromosomes. Mol. Gen. Genet. MGG 1991, 229, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Teulat, B.; Monneveux, P.; Wery, J.; Borries, C.; Souyris, I.; Charrier, A.; This, D. Relationships between relative water content and growth parameters under water stress in barley: A QTL study. New Phytol. 1997, 137, 99–107. [Google Scholar] [CrossRef]
- Teulat, B.; This, D.; Khairallah, M.; Borries, C.; Ragot, C.; Sourdille, P.; Leroy, P.; Monneveux, P.; Charrier, A. Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.). Theor. Appl. Genet. 1998, 96, 688–698. [Google Scholar] [CrossRef]
- Teulat, B.; Borries, C.; This, D. New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor. Appl. Genet. 2001, 103, 161–170. [Google Scholar] [CrossRef]
- Sayed, M.A.; Schumann, H.; Pillen, K.; Naz, A.A.; Léon, J. AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet. 2012, 13, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Shabala, S.; Ma, Y.; Xu, R.; Zhou, M. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genome 2015, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.M.; Dai, H.; Zheng, W.; Cao, F.; Zhang, G.; Sun, D.; Wu, F. Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem. 2013, 63, 49–60. [Google Scholar] [CrossRef]
- Wójcik-Jagła, M.; Fiust, A.; Kościelniak, J.; Rapacz, M. Association mapping of drought tolerance-related traits in barley to complement a traditional biparental QTL mapping study. Theor. Appl. Genet. 2018, 131, 167–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarah, N.; Alqudah, A. Effects of late-terminal drought stress on seed germination and vigor of barley (Hordeum vulgare L.). Arch. Agron. Soil Sci 2011, 57, 27–32. [Google Scholar] [CrossRef]
- Tabatabaei, S. Effect of osmo-priming on germination and enzyme activity in barley (Hordeum vulgare L.) seeds under drought stress conditions. J. Stress Physiol. Biochem. 2013, 9, 25–31. [Google Scholar]
- Abdel-Ghani, A.H.; Neumann, K.; Wabila, C.; Sharma, R.; Dhanagond, S.; Owais, S.J.; Börner, A.; Graner, A.; Kilian, B. Diversity of germination and seedling traits in aspring barley (Hordeum vulgare L.) collection under drought simulated conditions. Genet. Resour. Crop Evol. 2015, 62, 275–292. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Fedorowicz-Stron´ska, O.; Głowacka, K.; Was´kiewicz, A.; Sadowski, J. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiol. Plant 2017, 39, 41. [Google Scholar] [CrossRef] [Green Version]
- Schmidthoffer, I.; Szilák, L.; Molnár, P.; Csontos, P.; Skribanek, A. Drought tolerance of European barley (Hordeum vulgare L.) varieties. Agric. Pol’nohospodárstvo 2018, 64, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Chloupek, O.; Hrstkova, P.; Jurecka, D.; Graner, A. Tolerance of barley seed germination to cold and drought-stress expressed as seed vigour. Plant Breed. 2003, 122, 199–203. [Google Scholar] [CrossRef]
- Hellal, F.; El-Shabrawi, H.; El-Hady, M.A.; Khatab, I.; El-Sayed, S.; Abdelly, C. Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J. Genet. Eng. Biotechnol. 2018, 16, 203–212. [Google Scholar] [CrossRef]
- Iiona, C.M.; Marcińska, I.; Skrzypek, E.; Cyganek, K.; Juzoń1, K.; Karbarz, M. QTL mapping for germination of seeds obtained from previous wheat generation under drought. Cent. Eur. J. Biol. 2014, 9, 374–382. [Google Scholar] [CrossRef]
- Castro, A.; Hayes, J.P.; Viega, L.; Vales, I. Trancegressive segregation for phonological Traits in barley explained by two major QTL alleles with additivity. Plant Breed. 2008, 127, 561–568. [Google Scholar] [CrossRef]
- Shahraki, H.; Fakheri, B.A.; Allahdou, M. Genimic Regions Mapping for Some Phonological Traits Associated with Salt Tolerance in Doubled Haploid Lines of Barley (Hordeum Vulgare L.). J. Agric. Sci. 2013, 67, 403–409. Available online: https://www.researchgate.net/publication/259590984 (accessed on 26 May 2022).
- Ahmadi-Ochtapeh, H.; Soltanloo, H.; Ramezanpour, S.S.; Naghavi, M.R.; Nikkhah, H.R.; Yoosefi Rad, S. QTL mapping for salt tolerance in barley at seedling growth stage. Plant Biol. 2015, 59, 283–290. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Y.; Mak, M.; Babla, M.; Holford, P.; Wang, F.; Chen, G.; Scott, G.; Wang, G.; Shabala, S.; et al. QTLs for stomatal and photosynthetic traits related to salinity tolerance in barley. BMC Genet. 2017, 18, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collard, B.C.Y.; Mackill, D.J. Marker assisted selection: An approach for precision plant breeding in the twenty first century. Philos. Trans. R Soc. 2008, 363, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabouri, A.; Afshari, R.; Raiesi, R.; Babaei Raouf, T.; Nasiri, H.; Esfahani, E.; Kafi Ghasemi, A.; Kumar, A. Superior adaptation of aerobic rice under drought stress in Iran and validation test of linked SSR markers to major QTLs by MLM analysis across two years. Mol. Biol. Rep. 2018, 45, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, B.; Kordrostami, M.; Sabouri, A.; Sabouri, H. Identification of QTLs for yield related traits in Indica type rice using SSR and AFLP markers. Agric. Cons. Sci. 2015, 80, 91–99. [Google Scholar]
- Noryan, M.; Hervan, I.M.; Sabouri, H.; Kojouri, F.D.; Mastinu, A. Drought Resistance Loci in Recombinant Lines of Iranian Oryza sativa L. in Germination Stage. BioTech 2021, 10, 26. [Google Scholar] [CrossRef]
- Charati, A.K.; Sabouri, H.; Fallahi, H.A.; Jorjani, E. QTL Mapping of Spike Characteristics in Barley Using F3 and F4 Families Derived from Badia × Komino Cross. Plant Genet. Res. 2016, 3, 28. Available online: http://pgr.lu.ac.ir/article-1-86-en.html (accessed on 26 May 2022).
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Eur. J. Argon. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Haluschak, P. Laboratory Methods of Soil Analysis Canada-Manitoba Soil Survey; University of Manitoba Press: Winnipeg, MB, Canada, 2006; p. 133. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Allison, L.E.; Moodie, C.D. Carbonate. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Inc.; Soil Science Society of America, Inc. Publish: Madison, WI, USA, 1996; Volume 9, pp. 1379–1396. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Inc.; Soil Science Society of America, Inc. Publish: Madison, WI, USA, 1983; Volume 9, pp. 595–624. [Google Scholar]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.; Soltanpour, P.; Tabatabai, M.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis, Part 3—Chemical Methods; Soil Science Society of America Inc.; American Society of Agronomy Inc.: Madison, WI, USA, 1996; p. 1402. [Google Scholar] [CrossRef] [Green Version]
- Cavazza, L.; Patruno, A.; Cirillo, E. Field capacity in soils with a yearly oscillating water table. Biosystems 2007, 98, 364–370. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop water requirements. In Revised FAO Irrigation and Drainage; Paper 24; FAO of the United Nations: Rome, Italy, 1977; p. 144. [Google Scholar]
- Loresto, G.C.; Chang, T.T. Decimal scoring system for drought reactions and recovery ability in screening nurseries of rice. Int. Rice Res. Notes 1981, 6, 9–10. [Google Scholar]
- Rodriguez, I.R.; Miller, J.L. Using a chlorophyll meter to determine the chlorophyll concentration, nitrogen concentration, and visual quality of St. Augustine grass. Hort. Sci. 2000, 35, 751–754. [Google Scholar] [CrossRef] [Green Version]
- Mak, M.; Babla, M.; Xu, S.C.; O’carrigan, A.; Liu, X.H.; Gong, Y.M. Leaf mesophyll K+, H+ and Ca2+ fluxes are involved in drought-induced decrease in photosynthesis and stomatal closure in soybean. Environ. Exp. Bot. 2014, 98, 1–12. [Google Scholar] [CrossRef]
- O’carrigan, A.; Hinde, E.; Lu, N.; Xu, X.Q.; Duan, H.; Huang, G.; Mak, M.; Bellotti, B.; Chen, Z. Effects of light irradiance on stomatal regulation and growth of tomato. Environ. Exp. Bot. 2014, 98, 65–73. [Google Scholar] [CrossRef]
- Saghi Maroof, M.A.; Biyaoshev, R.M.; Yang, G.P.; Zhang, Q.; Allard, R.W. Extra ordinarily polymorphic microsatellites DNA in barly species diversity, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 1994, 91, 5466–5570. [Google Scholar] [CrossRef] [Green Version]
- Li, J.Z.; Sjakste, T.G.; Röder, M.S.; Ganal, M.W. Development and genetic mapping of 127 new microsatellite markers in barley. Theor. Appl. Genet. 2003, 107, 1021–1027. [Google Scholar] [CrossRef]
- Ramsay, L.; Macaulay, M.; Ivanissevich, D.S.; MacLean, K.; Cardle, L.; Fuller, J.; Edwards, K.J.; Tuvesson, S.; Morgante, M.; Massari, A. A simple sequence repeat-based linkage map of barley. Genetics 2000, 156, 1997–2005. [Google Scholar] [CrossRef]
- Struss, P.; Plieske, J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor. Appl. Genet. 1998, 97, 308–315. [Google Scholar] [CrossRef]
- Varshney, R.K.; Marcel, T.C.; Ramsay, L.; Russell, J.; Röder, M.S.; Stein, N.; Waugh, R.; Langridge, P.; Niks, R.E.; Graner, A. A high density barley microsatellite consensus map with 775 SSR loci. Theor. Appl. Genet. 2007, 114, 1091–1103. [Google Scholar] [CrossRef] [Green Version]
- Marcel, T.C.; Varshney, R.K.; Barbieri, M.; Jafary, H.; de Kock, M.J.D.; Graner, A.; Niks, R.E.A. high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homo-logues. Theor. Appl. Genet. 2007, 114, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Thiel, T.; Michalek, W.; Varshney, R.K.; Graner, A. Exploiting EST databases for the development of cDNA derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.B.; Tao, Y.F.; Yang, Z.Q.; Chu, J.Y. A simple and rapid method used for silver staining and gel preservation. Hereditas 2002, 24, 335–336. [Google Scholar] [PubMed]
- Kalendar, R.; Antonius, K.; Smýkal, P.; Schulman, A.H. iPBS: A universal method for DNA Wngerprinting and retrotransposon isolation. Theor. Appl. Genet. 2010, 121, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Grob, T.; Regina, M.; Suoniemi, A.; Schulman, A. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 1999, 98, 704–711. [Google Scholar] [CrossRef]
- Boronnikovaa, S.V.; Kalendar, R.N. Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants. Russ. J Genet. 2010, 46, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Collard, B.C.Y.; Mackill, D.J. Start Codon Targeted (SCoT) Polymorphism: A Simple, Novel DNA Marker Technique for Generating Gene-Targeted Markers in Plants. Plant Cell Biotechnol. Mol. Biol. 2009, 27, 86–93. [Google Scholar] [CrossRef]
- Singh, A.K.; Rana, M.K.; Singh, S.; Kumar, S.; Kumar, R.; Singh, R. CAAT box-derived polymorphism (CBDP): A novel promoter-targeted molecular marker for plants. Plant Biotech. J. 2014, 23, 175–183. [Google Scholar] [CrossRef]
- Manly, K.F.; Olson, J.M. Overview of QTL mapping software and introduction to map manager QTL. Mamm. Genome 1999, 10, 327–334. [Google Scholar] [CrossRef]
- Nelson, J. QGENE: Software for marker-based analysis and breeding. Mol. Plant Breed. 1997, 3, 239–245. [Google Scholar] [CrossRef]
- Graner, A.; Jahoor, A.; Schondelmaier, J.; Siedler, H.; Pillen, K.; Fischbeck, G.; Wenzel, G.; Herrmann, R.G. Construction of an RFLP map of barley. Theor. Appl. Genet. 1991, 83, 250–256. [Google Scholar] [CrossRef]
- Kleinhofs, A.; Kilian, A.; Saghai Maroof, M.A.; Biyashev, R.M.; Hayes, P.; Chen, F.Q.; Lapitan, N.; Fenwick, A.; Blake, T.K.; Kanazin, V.; et al. A molecular, isozyme and morphological map of the barley (Hordeum vulgare L.) genome. Theor. Appl. Genet. 1993, 86, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Wenzl, P.; Li, H.; Carling, J.; Zhou, M.; Raman, H.; Paul, E.; Hearnden, P.; Maier, C.; Xia, L.; Caig, V.; et al. A High-density consensus map of barley linking DArT markers to SSR, RFLP and STS Loci and agricultural traits. BMC Genet. 2006, 7, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Stam, P.; Lindhout, P. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor. Appl. Genet. 1998, 96, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Jafary, H.; Szabo, L.; Niks, R. Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol. Plant Microbe Interact. 2006, 19, 1270–1279. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Nankaku, N.; Motoi, Y.; Takeda, K. A large-scale mapping of ESTs on barley genome. In Proceedings of the 9th International Barley, Brno, Czech Republic, 20–26 June 2004; Spunar, J., Janikova, J., Eds.; Genetics Symposium. Agricultural Research Institute Kromeriz Ltd.: Brno, Czech Republic, 2004; pp. 79–85. [Google Scholar]
- Varshney, R.K.; Prasad, M.; Zhang, H.; Kota, R.; Sigmund, R.; Scholz, U.; Stein, N.; Graner, A. EST-derived markers and transcript map of barley: A resource for interspecies transferability and comparative mapping in cereals. In Proceedings of the 9th International Barley Genetics Symposium, Brno, Czech Republic, 20–26 June 2004; Spunar, J., Janikova, J., Eds.; Agricultural Research Institute Kromeriz Ltd.: Brno, Czech Republic, 2004; pp. 332–338. [Google Scholar]
- Rostoks, N.; Mudie, S.; Cardle, L.; Russell, J.; Ramsay, L.; Booth, A.; Svensson, J.T.; Wanamaker, E.M.; Hedley, P.E.; Liu, H.; et al. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Genom. 2005, 274, 515–527. [Google Scholar] [CrossRef]
- Tian, R.; Jiang, G.H.; Shen, L.H.; Wang, L.Q.; He, Y.Q. Mapping quantitative trait loci underlying the cooking and eating quality of rice using a DH population. Mol. Plant Breed. 2005, 15, 117–124. [Google Scholar] [CrossRef]
- Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 1994, 136, 1457–1468. [Google Scholar] [CrossRef]
- Gholparvar, A.R.; Ghanadha, M.R.; Zali, A.A.; Ahmadi, A. Evaluation of some morphological traits as selection criteria in breeding wheat. Iran. J. Crop Sci. 2003, 4, 202–208. [Google Scholar]
- Khoshgoftarmanesh, A.H.; Sharifi, H.R.; Afiuni, D.; Schulin, R. Classification of wheat genotypes by yield and densities of grain zinc and iron using cluster analysis. J. Geochem. Explor. 2012, 121, 49–54. [Google Scholar] [CrossRef]
- Amani Daz, P.; Hosseini Moghaddam, H.; Sabouri, H.; Gholamalipour Alamdari, E.; Hosseini, S.M.; Sanchouli, S. Mapping of QTLs related to morphophysiological traits in rice seedling (Oryza sativa L.) under drought condition. J. Crop Sci. Biotechnol. 2019, 9, 21–35. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Chang, X.; Jing, R. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica 2012, 189, 51–66. [Google Scholar] [CrossRef]
- Courtois, B.; McLaren, G.; Sinha, P.K.; Prasad, K.; Yadav, R.; Shen, L. Mapping QTLs associated with drought avoidance in upland rice. Mol. Plant Breed. 2000, 6, 55–66. [Google Scholar] [CrossRef]
- Chen, Y.; Carver, B.F.; Wang, S.; Cao, S.; Yan, L. Genetic regulation of developmental phases in winter wheat. Mol. Plant Breed. 2010, 26, 573–582. [Google Scholar] [CrossRef]
- Taghizadeh, Z.; Sabouri, H.; Hosseini Moghaddam, H.; Fallahi, H.A.; Katouzi, M. Importance of chromosome 4 in genetic controlling Spike Related Traits in Barley. Iran. J. Biol. 2019, 32, 175–185. [Google Scholar]
- Moslemi, H.; Solouki, M.; Fakheri, B.A. QTLs Analysis for Morphologic Traits of Barley under Boron Stress Condition. J. Plant Breed. Crop Sci. 2018, 10, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, S.G.; Sabouri, H.; Gholizadeh, A.; Fallahi, H. Identification of genomic regions controlling agromorphological traits of barley under normal conditions and Water stress. Environ. Stresses Crop Sci. 2019, 12, 631–648. [Google Scholar] [CrossRef]
- Golshani, F.; Fakheri, B.A. QTLs analysis controlling physiological traits of barley under nickel stress. New Genet. Soc. 2016, 11, 31–44. [Google Scholar]
- Fakheri, B.A.; Mehravaran, L. QTLs mapping of physiological and biochemical traits of barley under drought stress condition. Iran. J. Crop Sci. 2014, 15, 367–386. [Google Scholar]
- Arifuzzaman, M.; Günal, S.; Bungartz, A.; Muzammil, S.; Afsharyan, N.P.; Léon, J.; Naz, A.A. Genetic mapping reveals broader role of Vrn-H3 gene in root and shoot development beyond heading in barley. PLoS ONE 2016, 11, e0158718. [Google Scholar] [CrossRef]
- Siahsar, B.A.; Narouei, M. Mapping QTLs of physiological traits associated with salt tolerance in Steptoe × Morex doubled haploid lines of barley at seedling stage. J. Food Agric. Environ. 2010, 8, 751–759. [Google Scholar]
- Mano, Y.; Takeda, K. Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 1997, 94, 263–272. [Google Scholar] [CrossRef]
- Xue, W.; Yan, J.; Zhao, G.; Jiang, Y.; Cheng, J.; Cattivelli, L.; Tondelli, A. A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genet. 2017, 18, 79. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, G.; Ren, X.; Wang, J.; Du, B.; Li, C.; Sun, D. Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition. BMC Genet. 2017, 18, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sand | Silt | Clay | Potassium | Phosphorus | N | Organic Carbon | Neutral Substances | pH | EC |
---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (ppm) | (ppm) | (%) | (%) | (%) | (ds/m) | |
13 | 58 | 29 | 316 | 11.4 | 0.09 | 0.90 | 9.5 | 7.6 | 1.19 |
Reaction | Symptoms | Genetic Score |
---|---|---|
Highly Tolerant | Normal growth, no leaf symptoms | 1 |
Tolerant | Nearly normal growth but leaf tips or a few leaves are whitish and rolled | 3 |
Moderately Tolerant | Growth severely retarded, most leaves rolled, and only a few are elongated | 5 |
Sensitive | Complete cessation of growth, most leaves are dry, and some plants are dying | 7 |
Highly Sensitive | Almost all plants are dead or dying | 9 |
Reaction | Leaf Rolling | Leaf Burning | Genetic Score |
---|---|---|---|
Highly Tolerant | No signs of stress | No signs of stress | 0 |
Tolerant | No leaf rolling | Partial burning of leaf tips | 1 |
Moderately Tolerant | Partially rolling and no rolling in the evening | Dissipation of leaf tip burning by a quarter of the leaves | 3 |
Moderately Sensitive | Partially; no rolling at late evening and early morning | Burning of half of the young leaves and all of the lower leaves | 5 |
Sensitive | Fully rolling and no rolling in the morning | Burning of the leaves spread to three-quarters of the leaves | 7 |
Highly Sensitive | Like tube and rolling in the morning | Burning spread to all of the leaves | 9 |
Traits | Mean ± Standard Error | t Statistic | |||
---|---|---|---|---|---|
Normal | Drought | Salinity | t Normal-Drought | t Normal-Salinity | |
RN (no.) | 5.81 ± 0.04 | 5.20 ± 0.038 | 5.28 ± 0.041 | 11.04 ** | 9.12 ** |
RL (cm) | 16.12 ± 0.24 | 13.13 ± 0.282 | 15.41 ± 0.241 | 8.07 ** | 2.08 ** |
HE (cm) | 50.27 ± 19.43 | 13.11 ± 0.358 | 18.37 ± 0.251 | 1.26 ** | 1.09 ** |
RW (gr) | 0.092 ± 0.01 | 0.061 ± 0.003 | 0.08 ± 0.009 | 3.72 ** | 0.82 ** |
PW (gr) | 0.47 ± 0.01 | 0.10 ± 0.007 | 0.19 ± 0.008 | 26.22 ** | 19.56 ** |
LW (gr) | 2.34 ± 0.07 | 1.80 ± 0.050 | 2.42 ± 0.058 | 6.29 ** | −0.88 ** |
LN (no.) | 2.11 ± 0.07 | 2.87 ± 0.027 | 1.36 ± 0.28 | −10.04 ** | 10.04 ** |
Ll (cm) | 32.35.15 ± 0.09 | 19.58 ± 0.031 | 17.24 ± 0.31 | −7.02 ** | 4.01 ** |
SCR | 0.93 ± 0.02 | 4.39 ± 0.121 | 4.51 ± 0.09 | −28.16 ** | −40.15 ** |
SL (µm) | 41.58 ± 0.35 | 36.32 ± 0.385 | 37.13 ± 0.47 | 10.14 ** | 7.59 ** |
SW (µm) | 21.76 ± 0.22 | 17.63 ± 0.230 | 17.46 ± 0.21 | 13.07 ** | 14.10 ** |
SN (no.) | 37.87 ± 0.64 | 25.92 ± 0.667 | 35.82 ± 0.55 | 12.95 ** | 2.42 ** |
Variable | Regression Coefficient | Mean of Squares | F | R2 |
---|---|---|---|---|
LN | 0.05 ** | 0.30 | 24.51 | 0.2 |
RL | 0.01 ** | 0.21 | 19.58 | 0.28 |
RN | 0.08 ** | 0.19 | 19.03 | 0.37 |
SN | −0.00 ** | 0.16 | 17.17 | 0.45 |
CHI | 0.07 * | 0.13 | 15.15 | 0.44 |
Variable | Regression Coefficient | Mean of Squares | F | R2 |
---|---|---|---|---|
Plant Weight | ||||
LI | 0.01 ** | 0.57 | 11.99 | 11.0 |
LN | −0.08 ** | 0.45 | 10.19 | 17.5 |
SW | 0.01 * | 0.38 | 9.11 | 22.3 |
Genetic Score | ||||
LI | −0.22 ** | 79.26 | 99.75 | 50.7 |
RW | −9.95 ** | 44.86 | 64.64 | 57.4 |
LW | −0.36 * | 30.85 | 45.97 | 59.2 |
Variable | Regression Coefficient | Mean of Squares | F | R2 |
---|---|---|---|---|
Plant Weight | ||||
SCR | −0.04 ** | 0.23 | 56.12 | 36.2 |
LN | 0.07 ** | 0.13 | 33.37 | 40.5 |
Genetic Score | ||||
LN | −1.01 ** | 29.73 | 68.41 | 40.9 |
PL | −0.11 ** | 19.48 | 56.48 | 53.5 |
LW | −0.37 ** | 15.16 | 53.93 | 62.5 |
LI | −1.96 * | 11.89 | 45.33 | 65.4 |
SL | 0.22 * | 9.72 | 38.23 | 65.9 |
Traits | QTL | Chr | Position | Flanking Markers | Distance to Closer Marker | LOD | Add Effect | R2 | Allele Direction |
---|---|---|---|---|---|---|---|---|---|
SN | qSNN-3 | 3 | 44 | Bmac0067-HVM33 | 0.23 (HVM33) | 2.64 | −2.32 | 11.2 | Badia |
RL | qRLN-7a | 7 | 66 | GBMS0111-CAAT5-E | 2.75 (GBMS0111) | 2.53 | −1.60 | 10.8 | Badia |
qRLN-7b | 7 | 134 | SCoT5-B- ScoT4-A | 4.13 (ScoT5-B) | 2.60 | 1.98 | 11.1 | Kavir | |
LI | qLIN-2 | 2 | 60 | ISSR20-4-Bmag0115 | 0.39 (ISSR20-4) | 2.61 | −2.14 | 11.1 | Badia |
qLIN-4 | 4 | 70 | ISSR47-5-ISSR48-4 | 1.15 (ISSR48-4) | 2.80 | −2.21 | 11.9 | Badia | |
LW | qLWN-2 | 2 | 14 | scssr07759-Scot7-C | 0.26 (ScoT7-C) | 2.84 | −2.19 | 12 | Badia |
LN | qLNN-1 | 1 | 126 | ISSR16-2-CAAT1-A | 0.41 (CAAT1-A) | 2.50 | 0.86 | 10.7 | Kavir |
CHI | qCHN-3 | 3 | 164 | CAAT7-A-ISSR20-3 | 0.23 (ISSR20-3) | 2.62 | −0.22 | 11.2 | Badia |
Traits | QTL | Chromosome | Position | Flanking Markers | Distance to Closer Marker | LOD | Add Effect | R2 | Allele Direction |
---|---|---|---|---|---|---|---|---|---|
SN | qSND-1 | 1 | 58 | SCoT8-B- CAAT5-D | 3.04 (SCoT 8-B) | 3.87 | 6.10 | 16.5 | Kavir |
RW | qRWD-2 | 2 | 90 | HVM54- Bmag0571 | 0.36 (Bmag0571) | 3.48 | 0.02 | 14.5 | Kavir |
LW | qLWD-1 | 1 | 32 | HvALAAT-iPBS2231iPBS2074-1 | 0.13 (iPBS2231iPBS2074-1) | 2.64 | −0.35 | 11.2 | Badia |
qLWD-7 | 7 | 40 | iPBS2231iPBS2074-2-ISSR29-6 | 0.36 (ISSR29-6) | 2.87 | 0.05 | 12.1 | Kavir | |
qLWD-2 | 2 | 108 | ISSR30iPBS2076-4-GBM1462 | 2.23 (GBM1462) | 3.65 | 0.27 | 15.2 | Kavir | |
LN | qLND-4 | 4 | 136 | CAAT3-B- ISSR13-4 | 0.45 (ISSR13-4) | 2.95 | −0.20 | 12.5 | Badia |
qLND-5 | 5 | 82 | SCoT6-C- ISSR47-3 | 0.16 (ISSR47-3) | 3.29 | 0.25 | 13.8 | Kavir | |
SCR | qSCD-3 | 3 | 16 | EBmac0565-Bmag0013 | 1.26 (Bmag0013) | 2.59 | −0.56 | 11.1 | Badia |
qSCD-7 | 7 | 38 | iPBS2231iPBS2074-2-ISSR29-6 | 1.75 (iPBS2231iPBS2074-2) | 2.54 | −0.95 | 10.9 | Badia |
Traits | QTL | Chromosome | Position | Flanking Markers | Distance to Closer Marker | LOD | Add Effect | R2 | Allele Direction |
---|---|---|---|---|---|---|---|---|---|
SL | qSLS-1a | 1 | 28 | ISSR29-3- HVM20 | 0.74 (ISSR29-3) | 3.31 | −2.69 | 14 | Badia |
qSLS-1b | 1 | 108 | EBmac0816-Bmac0565 | 0.62 (Bmac0565) | 2.69 | −2.21 | 11.5 | Badia | |
qSLS-4 | 4 | 58 | EBmac0635-scssr14079 | 0.88 (EBmac0635) | 5.145 | −2.57 | 20.9 | Badia | |
qSLS-5 | 5 | 94 | EBmatc0003- ISSR38-7 | 0.76 (EBmatc0003) | 2.69 | −1.92 | 11.6 | Badia | |
qSLS-6 | 6 | 0 | IRAP50-3 | IRAP50-3 | 2.88 | 3.34 | 12.3 | Kavir | |
qSLS-7 | 7 | 100 | Bmag0135- scssr07970 | 1.23 (scssr07970) | 3.65 | −2.29 | 15.3 | Badia | |
SW | qSWS-4 | 4 | 28 | GMS089-ISSR16-8 | 1.41 (ISSR16-8) | 2.86 | −1.50 | 12.2 | Badia |
RL | qRLS-1 | 1 | 126 | ISSR16-2- CAAT1-A | 0.41 (CAAT1-A) | 2.72 | 2.94 | 11.5 | Kavir |
qRLS-4 | 4 | 140 | MGB84- Bmac0144 | 0.72 (MGB84) | 2.84 | 1.03 | 11.9 | Kavir | |
LW | qLWS-2 | 2 | 4 | EBmac0783- ISSR16-6 | 0.09 (EBmac0783) | 2.65 | −0.03 | 11.2 | Badia |
qLWS-3 | 3 | 44 | Bmac0067- HVM33 | 0.23 (HVM33) | 2.95 | 0.03 | 12.4 | Kavir | |
qLWS-4a | 4 | 56 | EBmac0906-EBmac0635 | 0.03 (EBmac0906) | 5.21 | 0.04 | 20.8 | Kavir | |
qLWS-4b | 4 | 140 | MGB84- Bmac0144 | 0.72 (MGB84) | 3.62 | 0.04 | 14.9 | Kavir | |
qLWS-5 | 5 | 94 | EBmatc0003- ISSR38-7 | 0.76 (EBmatc0003) | 3.31 | 0.03 | 13.8 | Kavir | |
qLWS-6 | 6 | 74 | HVM65- EBmac0874 | 1.26 (EBmac0874) | 2.75 | 0.03 | 11.6 | Kavir | |
qLWS-7 | 7 | 98 | Bmag0135- scssr07970 | 2.25 (Bmag0135) | 3.48 | 0.039 | 14.4 | Kavir | |
LN | qLNS-1 | 1 | 28 | ISSR29-3- HVM20 | 0.74 (ISSR29-3) | 2.97 | 0.15 | 12.5 | Kavir |
qLNS-4 | 4 | 56 | EBmac0906-EBmac0635 | 0.03 (EBmac0906) | 3.91 | 0.12 | 1.6 | Kavir | |
qLNS-6 | 6 | 62 | ISSR31-1- Bmag0867 | 1.77 (ISSR31-1) | 2.79 | 0.17 | 11.7 | Kavir | |
qLNS-7a | 7 | 62 | HvAMY2- GBMS0111 | 1.25 (GBMS0111) | 4.05 | −0.14 | 16.6 | Badia | |
qLNS-7b | 7 | 98 | Bmag0135- scssr07970 | 2.25 (Bmag0135) | 4.47 | 0.16 | 18.1 | Kavir | |
SCR | qSCS-1 | 1 | 126 | ISSR16-2- CAAT1-A | 0.41 (CAAT1-A) | 3.87 | −1.28 | 15.9 | Badia |
qSCS-4 | 4 | 56 | EBmac0906-EBmac0635 | 0.03 (EBmac0906) | 2.85 | −0.32 | 1.2 | Badia | |
qSCS-6a | 6 | 62 | ISSR31-1- Bmag0867 | 1.77 (ISSR31-1) | 2.69 | −0.51 | 11.4 | Badia | |
qSCS-6b | 6 | 74 | HVM65- EBmac0874 | 1.26 (EBmac0874) | 2.70 | −0.38 | 11.4 | Badia | |
qSCS-7 | 7 | 98 | Bmag0135- scssr07970 | 2.25 (Bmag0135) | 4.47 | −0.48 | 18.1 | Badia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhtoum, S.; Sabouri, H.; Gholizadeh, A.; Ahangar, L.; Katouzi, M. QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions. BioTech 2022, 11, 26. https://doi.org/10.3390/biotech11030026
Makhtoum S, Sabouri H, Gholizadeh A, Ahangar L, Katouzi M. QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions. BioTech. 2022; 11(3):26. https://doi.org/10.3390/biotech11030026
Chicago/Turabian StyleMakhtoum, Somayyeh, Hossein Sabouri, Abdollatif Gholizadeh, Leila Ahangar, and Mahnaz Katouzi. 2022. "QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions" BioTech 11, no. 3: 26. https://doi.org/10.3390/biotech11030026
APA StyleMakhtoum, S., Sabouri, H., Gholizadeh, A., Ahangar, L., & Katouzi, M. (2022). QTLs Controlling Physiological and Morphological Traits of Barley (Hordeum vulgare L.) Seedlings under Salinity, Drought, and Normal Conditions. BioTech, 11(3), 26. https://doi.org/10.3390/biotech11030026