The Role of Autologous Stem Cell Transplantation in the Treatment of Newly Diagnosed Multiple Myeloma: Is It Time to Rethink the Paradigm in the Era of Targeted Therapy?
Abstract
:1. Introduction
2. The Benefits of HDM
3. The Downsides of HDM
4. One Size Does Not Fit All—Personalized Treatment Decision Making
4.1. Patient and Disease Heterogeneity
4.2. MRD Evaluation for Adaptive Therapy
5. Alternatives to HDM-ASCT and the Emerging Role of Quadruplet Therapy
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McElwain, T.J.; Powles, R.L. High-dose intravenous melphalan for plasma-cell leukaemia and myeloma. Lancet 1983, 2, 822–824. [Google Scholar] [CrossRef] [PubMed]
- Bazarbachi, A.H.; Al Hamed, R.; Malard, F.; Bazarbachi, A.; Harousseau, J.L.; Mohty, M. Induction therapy prior to autologous stem cell transplantation (asct) in newly diagnosed multiple myeloma: An update. Blood Cancer J. 2022, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet therapy, transplantation, and maintenance until progression in myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.D., Jr.; Baljevic, M.; Baz, R.; Campagnaro, E.; Castillo, J.J.; Costello, C.; D’Angelo, C.; et al. Multiple myeloma, version 2.2024, nccn clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 1281–1301. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hajek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple myeloma: Eha-esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Child, J.A.; Morgan, G.J.; Davies, F.E.; Owen, R.G.; Bell, S.E.; Hawkins, K.; Brown, J.; Drayson, M.T.; Selby, P.J.; Medical Research Council Adult Leukaemia Working Party. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N. Engl. J. Med. 2003, 348, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Koreth, J.; Cutler, C.S.; Djulbegovic, B.; Behl, R.; Schlossman, R.L.; Munshi, N.C.; Richardson, P.G.; Anderson, K.C.; Soiffer, R.J.; Alyea, E.P., 3rd. High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: A systematic review and meta-analysis of randomized controlled trials. Biol. Blood Marrow Transplant. 2007, 13, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Macro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Gay, F.; Musto, P.; Rota-Scalabrini, D.; Bertamini, L.; Belotti, A.; Galli, M.; Offidani, M.; Zamagni, E.; Ledda, A.; Grasso, M.; et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (forte): A randomised, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 1705–1720. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Bene, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (cassiopeia): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Cazaubiel, T.; Facon, T.; Caillot, D.; Clement-Filliatre, L.; Macro, M.; Decaux, O.; Belhadj, K.; Mohty, M.; et al. Early versus late autologous stem cell transplant in newly diagnosed multiple myeloma: Long-term follow-up analysis of the ifm 2009 trial. Blood 2020, 136 (Suppl. S1), 39. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The griffin trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef] [PubMed]
- de Tute, R.M.; Pawlyn, C.; Cairns, D.A.; Davies, F.E.; Menzies, T.; Rawstron, A.; Jones, J.R.; Hockaday, A.; Henderson, R.; Cook, G.; et al. Minimal residual disease after autologous stem-cell transplant for patients with myeloma: Prognostic significance and the impact of lenalidomide maintenance and molecular risk. J. Clin. Oncol. 2022, 40, 2889–2900. [Google Scholar] [CrossRef] [PubMed]
- Goicoechea, I.; Puig, N.; Cedena, M.T.; Burgos, L.; Cordon, L.; Vidriales, M.B.; Flores-Montero, J.; Gutierrez, N.C.; Calasanz, M.J.; Ramos, M.M.; et al. Deep mrd profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood 2021, 137, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.; Lauwers-Cances, V.; Robillard, N.; Hulin, C.; Leleu, X.; Benboubker, L.; Marit, G.; Moreau, P.; Pegourie, B.; Caillot, D.; et al. Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma: A phase ii study by the intergroupe francophone du myelome. J. Clin. Oncol. 2014, 32, 2712–2717. [Google Scholar] [CrossRef]
- Bhutani, M.; Robinson, M.; Atrash, S.; Paul, B.; Pineda-Roman, M.; Foureau, D.; Varga, C.; Friend, R.; Begic, X.; Norek, S.; et al. Primary endpoint analysis from a response adaptive phase ii clinical trial of carfilzomib, lenalidomide, dexamethasone plus daratumumab (krd-dara) in patients with newly diagnosed multiple myeloma (ndmm). Blood 2023, 142 (Suppl. S1), 3380. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma. J. Clin. Oncol. 2022, 40, 2901–2912. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (master): Final report of the multicentre, single-arm, phase 2 trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef]
- Derman, B.A.; Cooperrider, J.H.; Rosenblatt, J.; Avigan, D.; Rampurwala, M.M.; Major, A.; Karrison, T.; Jiang, K.; Kubicki, T.; Jakubowiak, A.J. Final analysis of a phase 2 trial of daratumumab, carfilzomib, lenalidomide, and dexamethasone in newly diagnosed multiple myeloma (ndmm) without autologous stem cell transplantation (asct). Blood 2023, 142 (Suppl. S1), 4747. [Google Scholar] [CrossRef]
- Derman, B.A.; Kansagra, A.; Zonder, J.; Stefka, A.T.; Grinblatt, D.L.; Anderson, L.D., Jr.; Gurbuxani, S.; Narula, S.; Rayani, S.; Major, A.; et al. Elotuzumab and weekly carfilzomib, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma without transplant intent: A phase 2 measurable residual disease-adapted study. JAMA Oncol. 2022, 8, 1278–1286. [Google Scholar] [CrossRef]
- Gay, F.; Roeloffzen, W.; Dimopoulos, M.A.; Rosiñol, L.; van der Klift, M.; Mina, R.; Oriol Rocafiguera, A.; Katodritou, E.; Wu, K.L.; Rodriguez Otero, P.; et al. Results of the phase iii randomized iskia trial: Isatuximab-carfilzomib-lenalidomide-dexamethasone vs carfilzomib-lenalidomide-dexamethasone as pre-transplant induction and post-transplant consolidation in newly diagnosed multiple myeloma patients. Blood 2023, 142 (Suppl. S1), 4. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Bertsch, U.; Fenk, R.; Nievergall, E.; Tichy, D.; Besemer, B.; Durig, J.; Schroers, R.; von Metzler, I.; et al. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (gmmg-hd7): Part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022, 9, e810–e821. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.F.; Hall, A.; Walker, K.; Sherborne, A.; De Tute, R.M.; Newnham, N.; Roberts, S.; Ingleson, E.; Bowles, K.; Garg, M.; et al. Daratumumab, cyclophosphamide, bortezomib, lenalidomide, and dexamethasone as induction and extended consolidation improves outcome in ultra-high-risk multiple myeloma. J. Clin. Oncol. 2023, 41, 3945–3955. [Google Scholar] [CrossRef] [PubMed]
- Knop, S.; Stuebig, T.; Kull, M.; Greil, R.; Steiner, N.; Bassermann, F.; Nogai, A.; von Lilienfeld-Toal, M.; Janjetovic, S.; Trautmann-Grill, K.; et al. Carfilzomib, lenalidomide, and dexamethasone (krd) versus elotuzumab and krd in transplant-eligible patients with newly diagnosed multiple myeloma: Post-induction response and mrd results from an open-label randomized phase 3 study. J. Clin. Oncol. 2023, 41 (Suppl. S16), 8000. [Google Scholar] [CrossRef]
- Leypoldt, L.B.; Tichy, D.; Besemer, B.; Hanel, M.; Raab, M.S.; Mann, C.; Munder, M.; Reinhardt, H.C.; Nogai, A.; Gorner, M.; et al. Isatuximab, carfilzomib, lenalidomide, and dexamethasone for the treatment of high-risk newly diagnosed multiple myeloma. J. Clin. Oncol. 2024, 42, 26–37. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, E.K.; Mo, C.C.; Yee, A.J.; Nadeem, O.; Branagan, A.R.; Laubach, J.; Rosenblatt, J.; Horick, N.; Richardson, P.G.; Raje, N.; et al. A phase ii study of isatuximab, once weekly carfilzomib, lenalidomide, dexamethasone, in newly diagnosed, transplant-eligible multiple myeloma (the skylark trial). Blood 2023, 142 (Suppl. S1), 4671. [Google Scholar] [CrossRef]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2024, 390, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Touzeau, C.; Perrot, A.; Hulin, C.; Manier, S.; Macro, M.; Chretien, M.-L.; Karlin, L.; Decaux, O.; Jacquet, C.; Tiab, M.; et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone induction and consolidation with tandem transplant in high-risk newly diagnosed myeloma patients: Final results of the phase 2 study ifm 2018-04. Blood 2023, 142 (Suppl. S1), 207. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D., Jr.; et al. Addition of daratumumab to lenalidomide, bortezomib, and dexamethasone for transplantation-eligible patients with newly diagnosed multiple myeloma (griffin): Final analysis of an open-label, randomised, phase 2 trial. Lancet Haematol. 2023, 10, e825–e837. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Touzeau, C.; Decaux, O.; Hulin, C.; Macro, M.; Stoppa, A.-M.; Chretien, M.L.; Karlin, L.; Mariette, C.; et al. Daratumumab plus ixazomib, lenalidomide, and dexamethasone as extended induction and consolidation followed by lenalidomide maintenance in standard-risk transplant-eligible newly diagnosed multiple myeloma (ndmm) patients (ifm 2018-01): A phase ii study of the intergroupe francophone du myélome (ifm). Blood 2021, 138 (Suppl. S1), 464. [Google Scholar] [CrossRef]
- Landgren, O.; Hultcrantz, M.; Diamond, B.; Lesokhin, A.M.; Mailankody, S.; Hassoun, H.; Tan, C.; Shah, U.A.; Lu, S.X.; Salcedo, M.; et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: The manhattan nonrandomized clinical trial. JAMA Oncol. 2021, 7, 862–868. [Google Scholar] [CrossRef]
- Anderson, K.C.; Auclair, D.; Adam, S.J.; Agarwal, A.; Anderson, M.; Avet-Loiseau, H.; Bustoros, M.; Chapman, J.; Connors, D.E.; Dash, A.; et al. Minimal residual disease in myeloma: Application for clinical care and new drug registration. Clin. Cancer Res. 2021, 27, 5195–5212. [Google Scholar] [CrossRef]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A large meta-analysis establishes the role of mrd negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Ludwig, H.; Landgren, O.; Paiva, B.; Morris, C.; Yang, H.; Zhou, K.; Ro, S.; Mateos, M.V. Minimal residual disease status as a surrogate endpoint for progression-free survival in newly diagnosed multiple myeloma studies: A meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e30–e37. [Google Scholar] [CrossRef]
- Uckun, F.M. Overcoming the immunosuppressive tumor microenvironment in multiple myeloma. Cancers 2021, 13, 2018. [Google Scholar] [CrossRef]
- Swamydas, M.; Murphy, E.V.; Ignatz-Hoover, J.J.; Malek, E.; Driscoll, J.J. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J. Hematol. Oncol. 2022, 15, 17. [Google Scholar] [CrossRef]
- Minnie, S.A.; Hill, G.R. Immunotherapy of multiple myeloma. J. Clin. Investig. 2020, 130, 1565–1575. [Google Scholar] [CrossRef]
- Minnie, S.A.; Hill, G.R. Autologous stem cell transplantation for myeloma: Cytoreduction or an immunotherapy? Front. Immunol. 2021, 12, 651288. [Google Scholar] [CrossRef]
- Franqui-Machin, R.; Wendlandt, E.B.; Janz, S.; Zhan, F.; Tricot, G. Cancer stem cells are the cause of drug resistance in multiple myeloma: Fact or fiction? Oncotarget 2015, 6, 40496–40506. [Google Scholar] [CrossRef]
- Dhakal, B.; Szabo, A.; Chhabra, S.; Hamadani, M.; D’Souza, A.; Usmani, S.Z.; Sieracki, R.; Gyawali, B.; Jackson, J.L.; Asimakopoulos, F.; et al. Autologous transplantation for newly diagnosed multiple myeloma in the era of novel agent induction: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 343–350. [Google Scholar] [CrossRef]
- Straka, C.; Schaefer-Eckart, K.; Hertenstein, B.; Bassermann, F.; Salwender, H.; Langer, C.; Krönke, J.; Kull, M.; Schilling, G.; Schieferdecker, A.; et al. Long-term outcome of a prospective randomized trial comparing continuous lenalidomide/dexamethasone with lenalidomide/dexamethasone induction, mel140 with autologous blood stem cell transplantation and single agent lenalidomide maintenance in patients of age 60–75 years with newly diagnosed multiple myeloma. Blood 2022, 140 (Suppl. S1), 287–288. [Google Scholar] [CrossRef]
- D’Souza, A.; Lonial, S. What the princess bride teaches us about outcomes in multiple myeloma. J. Clin. Oncol. 2021, 39, 2423–2425. [Google Scholar] [CrossRef]
- Roussel, M.; Hebraud, B.; Hulin, C.; Perrot, A.; Caillot, D.; Stoppa, A.M.; Macro, M.; Escoffre, M.; Arnulf, B.; Belhadj, K.; et al. Health-related quality of life results from the ifm 2009 trial: Treatment with lenalidomide, bortezomib, and dexamethasone in transplant-eligible patients with newly diagnosed multiple myeloma. Leuk Lymphoma 2020, 61, 1323–1333. [Google Scholar] [CrossRef]
- Richardson, P.G.; San Miguel, J.F.; Moreau, P.; Hajek, R.; Dimopoulos, M.A.; Laubach, J.P.; Palumbo, A.; Luptakova, K.; Romanus, D.; Skacel, T.; et al. Interpreting clinical trial data in multiple myeloma: Translating findings to the real-world setting. Blood Cancer J. 2018, 8, 109. [Google Scholar] [CrossRef]
- Maura, F.; Weinhold, N.; Diamond, B.; Kazandjian, D.; Rasche, L.; Morgan, G.; Landgren, O. The mutagenic impact of melphalan in multiple myeloma. Leukemia 2021, 35, 2145–2150. [Google Scholar] [CrossRef]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Phase 3 determination trial in newly diagnosed multiple myeloma: Lenalidomide, bortezomib and dexamethasone (rvd) ± autologous stem cell transplantation and lenalidomide maintenance to progression. EHA Libr. 2022, 2022, LB2366. [Google Scholar] [CrossRef]
- Radivoyevitch, T.; Dean, R.M.; Shaw, B.E.; Brazauskas, R.; Tecca, H.R.; Molenaar, R.J.; Battiwalla, M.; Savani, B.N.; Flowers, M.E.D.; Cooke, K.R.; et al. Risk of acute myeloid leukemia and myelodysplastic syndrome after autotransplants for lymphomas and plasma cell myeloma. Leuk. Res. 2018, 74, 130–136. [Google Scholar] [CrossRef]
- Diamond, B.; Ziccheddu, B.; Maclachlan, K.; Taylor, J.; Boyle, E.; Ossa, J.A.; Jahn, J.; Affer, M.; Totiger, T.M.; Coffey, D.; et al. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood 2023, 141, 2359–2371. [Google Scholar] [CrossRef]
- Samur, M.K.; Roncador, M.; Aktas Samur, A.; Fulciniti, M.; Bazarbachi, A.H.; Szalat, R.; Shammas, M.A.; Sperling, A.S.; Richardson, P.G.; Magrangeas, F.; et al. High-dose melphalan treatment significantly increases mutational burden at relapse in multiple myeloma. Blood 2023, 141, 1724–1736. [Google Scholar] [CrossRef]
- Terpos, E.; Mikhael, J.; Hajek, R.; Chari, A.; Zweegman, S.; Lee, H.C.; Mateos, M.V.; Larocca, A.; Ramasamy, K.; Kaiser, M.; et al. Management of patients with multiple myeloma beyond the clinical-trial setting: Understanding the balance between efficacy, safety and tolerability, and quality of life. Blood Cancer J. 2021, 11, 40. [Google Scholar] [CrossRef]
- Joseph, N.S.; Kaufman, J.L.; Dhodapkar, M.V.; Hofmeister, C.C.; Almaula, D.K.; Heffner, L.T.; Gupta, V.A.; Boise, L.H.; Lonial, S.; Nooka, A.K. Long-term follow-up results of lenalidomide, bortezomib, and dexamethasone induction therapy and risk-adapted maintenance approach in newly diagnosed multiple myeloma. J. Clin. Oncol. 2020, 38, 1928–1937. [Google Scholar] [CrossRef]
- Snowden, J.A.; Greenfield, D.M.; Bird, J.M.; Boland, E.; Bowcock, S.; Fisher, A.; Low, E.; Morris, M.; Yong, K.; Pratt, G.; et al. Guidelines for screening and management of late and long-term consequences of myeloma and its treatment. Br. J. Haematol. 2017, 176, 888–907. [Google Scholar] [CrossRef]
- Hassoun, H.; Jacobus, S.J.; Richardson, P.G.; Zonder, J.A.; Voorhees, P.M.; Kaufman, J.L.; Yee, A.J.; Scott, E.C.; Torka, P.; Libby, E.; et al. Multivariable analyses of prognostic factors for progression-free survival (pfs) and complete response (cr) with lenalidomide, bortezomib, and dexamethasone (rvd) alone versus rvd plus autologous stem cell transplantation (asct) in patients (pts) with newly diagnosed multiple myeloma (ndmm) in the determination phase 3 trial. Blood 2022, 140 (Suppl. S1), 4834–4838. [Google Scholar] [CrossRef]
- Zonder, J.A.; Khan, A.; Jacobus, S.J.; Hassoun, H.; Anderson, L.D., Jr.; Merz, L.E.; Zon, R.L.; Efebera, Y.; Buck, T.; Innis-Shelton, R.D.; et al. Treatment outcomes and prognostic factors with lenalidomide, bortezomib, and dexamethasone (rvd) alone versus rvd plus autologous stem cell transplantation (asct) in african american (aa) patients (pts) with newly diagnosed multiple myeloma (ndmm) in the determination phase 3 trial. Blood 2023, 142 (Suppl. S1), 4762. [Google Scholar] [CrossRef]
- Mouhieddine, T.H.; Sperling, A.S.; Redd, R.; Park, J.; Leventhal, M.; Gibson, C.J.; Manier, S.; Nassar, A.H.; Capelletti, M.; Huynh, D.; et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nat. Commun. 2020, 11, 2996. [Google Scholar] [CrossRef]
- Soerensen, J.F.; Aggerholm, A.; Rosenberg, C.A.; Bill, M.; Kerndrup, G.B.; Ebbesen, L.H.; Hansen, M.H.; Roug, A.S.; Ludvigsen, M. Clonal evolution in patients developing therapy-related myeloid neoplasms following autologous stem cell transplantation. Bone Marrow Transplant. 2022, 57, 460–465. [Google Scholar] [CrossRef]
- Gramegna, D.; Bertoli, D.; Cattaneo, C.; Almici, C.; Re, A.; Belotti, A.; Borlenghi, E.; Lanzi, G.; Archetti, S.; Verardi, R.; et al. The role of clonal hematopoiesis as driver of therapy-related myeloid neoplasms after autologous stem cell transplantation. Ann. Hematol. 2022, 101, 1227–1237. [Google Scholar] [CrossRef]
- Soerensen, J.F.; Aggerholm, A.; Kerndrup, G.B.; Hansen, M.C.; Ewald, I.K.L.; Bill, M.; Ebbesen, L.H.; Rosenberg, C.A.; Hokland, P.; Ludvigsen, M.; et al. Clonal hematopoiesis predicts development of therapy-related myeloid neoplasms post-autologous stem cell transplantation. Blood Adv. 2020, 4, 885–892. [Google Scholar] [CrossRef]
- Kazandjian, D.; Mo, C.C.; Landgren, O.; Richardson, P.G. The role of high-dose melphalan with autologous stem-cell transplant in multiple myeloma: Is it time for a paradigm shift? Br. J. Haematol. 2020, 191, 692–703. [Google Scholar] [CrossRef]
- Morgan, G.J.; Walker, B.A.; Davies, F.E. The genetic architecture of multiple myeloma. Nat. Rev. Cancer 2012, 12, 335–348. [Google Scholar] [CrossRef]
- Maura, F.; Rajanna, A.R.; Ziccheddu, B.; Poos, A.M.; Derkach, A.; Maclachlan, K.; Durante, M.; Diamond, B.; Papadimitriou, M.; Davies, F.; et al. Genomic classification and individualized prognosis in multiple myeloma. J. Clin. Oncol. 2024, 42, 1229–1240. [Google Scholar] [CrossRef]
- Landgren, O.; Maura, F.; Kazandjian, D. Advance multicenter clinical trial: Mrd-driven therapy in newly diagnosed multiple myeloma patients. Blood 2023, 142 (Suppl. S1), 3392. [Google Scholar] [CrossRef]
- Coffey, D.G.; Maura, F.; Gonzalez-Kozlova, E.; Diaz-Mejia, J.J.; Luo, P.; Zhang, Y.; Xu, Y.; Warren, E.H.; Dawson, T.; Lee, B.; et al. Immunophenotypic correlates of sustained mrd negativity in patients with multiple myeloma. Nat. Commun. 2023, 14, 5335. [Google Scholar] [CrossRef]
- Derman, B.A.; Fonseca, R. Measurable residual disease and decision-making in multiple myeloma. Hematol. Oncol. Clin. N. Am. 2024, 38, 477–495. [Google Scholar] [CrossRef]
- Charalampous, C.; Goel, U.; Kapoor, P.; Binder, M.; Buadi, F.K.; Cook, J.; Dingli, D.; Dispenzieri, A.; Fonder, A.L.; Gertz, M.A.; et al. Outcomes of patients with primary refractory multiple myeloma in the era of triplet and quadruplet induction therapy. Blood Adv. 2023, 7, 4371–4380. [Google Scholar] [CrossRef]
- Jurczyszyn, A.; Waszczuk-Gajda, A.; Castillo, J.J.; Krawczyk, K.; Stork, M.; Pour, L.; Usnarska-Zubkiewicz, L.; Potoczek, S.; Hus, I.; Davila Valls, J.; et al. Primary refractory multiple myeloma: A real-world experience with 85 cases. Leuk. Lymphoma 2020, 61, 2868–2875. [Google Scholar] [CrossRef]
- Lonial, S.; Popat, R.; Hulin, C.; Jagannath, S.; Oriol, A.; Richardson, P.G.; Facon, T.; Weisel, K.; Larsen, J.T.; Minnema, M.C.; et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (cc-220-mm-001): A multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol. 2022, 9, e822–e832. [Google Scholar] [CrossRef]
- Richardson, P.G.; Trudel, S.; Popat, R.; Mateos, M.V.; Vangsted, A.J.; Ramasamy, K.; Martinez-Lopez, J.; Quach, H.; Orlowski, R.Z.; Arnao, M.; et al. Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma. N. Engl. J. Med. 2023, 389, 1009–1022. [Google Scholar] [CrossRef]
- More, S.; Corvatta, L.; Manieri, V.M.; Morsia, E.; Poloni, A.; Offidani, M. Novel immunotherapies and combinations: The future landscape of multiple myeloma treatment. Pharmaceuticals 2023, 16, 1628. [Google Scholar] [CrossRef]
- Richardson, P.G.; Oriol, A.; Larocca, A.; Blade, J.; Cavo, M.; Rodriguez-Otero, P.; Leleu, X.; Nadeem, O.; Hiemenz, J.W.; Hassoun, H.; et al. Melflufen and dexamethasone in heavily pretreated relapsed and refractory multiple myeloma. J. Clin. Oncol. 2021, 39, 757–767. [Google Scholar] [CrossRef]
- Schjesvold, F.H.; Dimopoulos, M.A.; Delimpasi, S.; Robak, P.; Coriu, D.; Legiec, W.; Pour, L.; Spicka, I.; Masszi, T.; Doronin, V.; et al. Melflufen or pomalidomide plus dexamethasone for patients with multiple myeloma refractory to lenalidomide (ocean): A randomised, head-to-head, open-label, phase 3 study. Lancet Haematol. 2022, 9, e98–e110. [Google Scholar] [CrossRef]
- Ocio, E.M.; Efebera, Y.A.; Hájek, R.; Straub, J.; Maisnar, V.; Eveillard, J.-R.; Karlin, L.; Mateos, M.-V.; Oriol, A.; Ribrag, V.; et al. ANCHOR: Melflufen plus dexamethasone and daratumumab or bortezomib in relapsed/refractory multiple myeloma: Final results of a phase I/IIa study. Haematologica 2024, 109, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Pour, L.; Szarejko, M.; Bila, J.; Schjesvold, F.H.; Spicka, I.; Maisnar, V.; Jurczyszyn, A.; Grudeva-Popova, Z.; Hájek, R.; Usenko, G.; et al. Efficacy and safety of melflufen plus daratumumab and dexamethasone in relapsed/refractory multiple myeloma: Results from the randomized, open-label, phase III LIGHTHOUSE study. Haematologica 2024, 109, 895–905. [Google Scholar] [CrossRef]
- Dhodapkar, M.V.; Alsina, M.; Berdeja, J.G.; Patel, K.K.; Richard, S.; Vij, R.; Leleu, X.; Egan, D.N.; Bergsagel, P.L.; Reshef, R.; et al. Efficacy and safety of idecabtagene vicleucel (ide-cel) in patients with clinical high-risk newly diagnosed multiple myeloma (ndmm) with an inadequate response to frontline autologous stem cell transplantation (asct): Karmma-2 cohort 2c extended follow-up. Blood 2023, 142 (Suppl. S1), 2101. [Google Scholar] [CrossRef]
- Boccadoro, M.; San-Miguel, J.; Suzuki, K.; Van De Donk, N.W.C.J.; Cook, G.; Jakubowiak, A.; Madduri, D.; Afifi, S.; Stevens, A.-S.; Schecter, J.M.; et al. Dvrd followed by ciltacabtagene autoleucel versus dvrd followed by asct in patients with newly diagnosed multiple myeloma who are transplant eligible: A randomized phase 3 study (emagine/cartitude-6). Blood 2022, 140 (Suppl. S1), 4630–4632. [Google Scholar] [CrossRef]
- Zamagni, E.; Boccadoro, M.; Spencer, A.; Delforge, M.; Reece, D.E.; Szabo, A.G.; Einsele, H.; Terpos, E.; Schjesvold, F.; Bila, J.; et al. Majestec-4 (emn30): A phase 3 trial of teclistamab + lenalidomide versus lenalidomide alone as maintenance therapy following autologous stem cell transplantation in patients with newly diagnosed multiple myeloma. Blood 2022, 140 (Suppl. S1), 7289–7291. [Google Scholar] [CrossRef]
- Krishnan, A.Y.; Manier, S.; Terpos, E.; Usmani, S.; Khan, J.; Pearson, R.; Girgis, S.; Guo, Y.; McAleer, D.; Olyslager, Y.; et al. Majestec-7: A phase 3, randomized study of teclistamab + daratumumab + lenalidomide (tec-dr) versus daratumumab + lenalidomide + dexamethasone (drd) in patients with newly diagnosed multiple myeloma who are either ineligible or not intended for autologous stem cell transplant. Blood 2022, 140 (Suppl. S1), 10148–10149. [Google Scholar] [CrossRef]
- Mateos Manteca, M.V.; Grosicki, S.; Kim, K.; Negre, E.; Vandendries, E. Magnetismm-7: An open-label, multicenter, randomized phase 3 study of elranatamab versus lenalidomide in post-transplant patients with newly diagnosed multiple myeloma. J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS8066. [Google Scholar] [CrossRef]
- Grosicki, S.; Yeh, S.-P.; Huang, J.S.Y.; Byun, J.M.; DiRienzo, C.; Viqueira, A. Magnetismm-6: An open-label, multicenter, randomized phase 3 study of elranatamab + daratumumab + lenalidomide (edr) versus daratumumab + lenalidomide + dexamethasone (drd) in transplant ineligible (ti) patients with newly diagnosed multiple myeloma (ndmm). J. Clin. Oncol. 2023, 41 (Suppl. S16), TPS8065. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Touzeau, C.; Terpos, E.; Perrot, A.; Mina, R.; de Ruijter, M.; Antonioli, E.; Katodritou, E.; Pescosta, N.; Geerts, P.A.F.; et al. Iberdomide maintenance after autologous stem-cell transplantation in newly diagnosed mm: First results of the phase 2 emn26 study. Blood 2023, 142 (Suppl. S1), 208. [Google Scholar] [CrossRef]
Study | Induction Therapy | ASCT | Consolidation Therapy | Maintenance Therapy | MRD-Negativity Rate |
---|---|---|---|---|---|
IFM 2009 [8,11] | RVd × 3 3-week cycles | No | RVd × 5 3-week cycles | R, 1 year | 20% |
IFM 2009 [8,11] | RVd × 3 3-week cycles | Yes | RVd × 2 3-week cycles | R, 1 year | 30% |
GRIFFIN [12,29] | RVd × 4 3-week cycles | Yes | RVd × 2 3-week cycles | R | 30% |
DSMM XVII [24] | KRd × 6 4-week cycles | Yes | KRd × 4 4-week cycles | R | 35% post induction |
GMMG-HD7 [22] | RVd × 3 6-week cycles | No | – | R + Isa vs. R | 36% post induction |
DETERMINATION [3] | RVd × 3 3-week cycles | No | RVd × 5 3-week cycles | R until progression | 40% * |
FORTE [9] | KCd × 4 4-week cycles | Yes | KCd × 4 4-week cycles | KR vs. R | 43% |
CASSIOPEIA [10] | VTd × 4 4-week cycles | Yes | VTd × 2 4-week cycles | Dara vs. observation | 44% |
PERSEUS [27] | RVd × 4 4-week cycles | Yes | RVd × 2 4-week cycles | R until progression | 48% |
GEM2012MENOS65 [14] | RVd × 6 3-week cycles | Yes | RVd × 2 3-week cycles | IRd or Rd | 49% (SR); 37% (HR) |
DETERMINATION [3] | RVd × 3 3-week cycles | Yes | RVd × 2 3-week cycles | R until progression | 54% * |
FORTE [9] | KRd × 12 4-week cycles | No | – | KR vs. R | 56% |
FORTE [9] | KRd × 4 4-week cycles | Yes | KRd × 4 4-week cycles | KR vs. R | 62% |
Myeloma XI [13] | CTD/CRD/KCRD × 4 cycles | Yes | – | R vs. none | 63% (3 months post-ASCT) |
IsKia [21] | KRd × 4 4-week cycles | Yes | KRd × 4, KRd-light × 12 | R | 67% post consolidation |
CASSIOPEIA [10] | Dara-VTd × 4 4-week cycles | Yes | VTd × 2 4-week cycles | Dara vs. observation | 44% |
DSMM XVII [24] | Elo-KRd × 6 4-week cycles | Yes | Elo-KRd × 4 4-week cycles | Elo-R | 50% post induction |
GMMG-HD7 [22] | Isa-RVd × 3 6-week cycles | No | – | R + Isa vs. R | 50% post induction |
IFM 2018-01 [30] | Dara-IRd × 6 3-week cycles | Yes | Dara-IRd × 4 4-week cycles | R, 2 years | 51% (SR, after 1 year of maintenance) |
NCT04113018 [16] | Dara-KRd × 8 4-week cycles | No/Yes/No | –/Dara-KRd × 12 4-week cycles/Dara-KRd × 12 4-week cycles | R | 62% post induction |
Derman et al. [19] | Dara-KRd × 24 4-week cycles | No | – | – | 63% (post 8 cycles) |
GRIFFIN [12,29] | Dara-RVd × 4 3-week cycles | Yes | Dara-RVd × 2 3-week cycles | Dara-R | 64% |
SKylaRk [26] | Isa-KRd × 4 4-week cycles | Yes/No | Isa-KRd × 2/4 4-week cycles | Isa-KR (HR), R (SR) | 66% (post 6 cycles) |
GMMG-CONCEPT [25] | Isa-KRd × 6 4-week cycles | Yes/No | Isa-KRd × 4 4-week cycles | Isa-KR, 26 cycles | 68%/54% |
IRB16-1138 [20] | Elo-KRd × 12 4-week cycles | No | Elo-KRd × 0–12 4-week cycles | Elo-Rd | 70% |
MANHATTAN [31] | Dara-KRd × 8 4-week cycles | No | – | – | 71% |
PERSEUS [27] | Dara-RVd × 4 4-week cycles | Yes | Dara-RVd × 2 4-week cycles | Dara-R/R until progression | 75% |
IsKia [21] | Isa-KRd × 4 4-week cycles | Yes | Isa-KRd × 4, Isa-KRd-light × 12 | R | 77% post consolidation |
MASTER [17,18] | Dara-KRd × 4 4-week cycles | Yes | Dara-KRd × 0–8 4-week cycles | R | 38% (post induction) 81% (post MRD-directed consolidation) |
IFM2018-04 [28] | Dara-KRd × 6 4-week cycles | Yes | Dara-KRd × 4 4-week cycles | Dara-R, 2 years | 94% |
OPTIMUM/MUKnine (UHR NDMM) [23] | Dara-CRVd × 6 cycles | Yes | Dara-RVd × 6 cycles, Dara-RV × 12 cycles | Dara-R until progression | 64% post ASCT |
Agent | Study | Phase | ClinicalTrials.gov ID | Setting | Primary Endpoint | Initial Completion Date |
---|---|---|---|---|---|---|
CAR T cell therapies | ||||||
Ide-cel | KarMMa-2 [74] | 2 | NCT03601078 | Inadequate response to ASCT in 1st line | ORR CR rate | July 2025 |
KarMMa-9 | 3 | NCT06045806 | Ide-cel + R vs. R maintenance for sub-optimal response post ASCT | PFS | March 2031 | |
BMTCTN1902 | 2 | NCT05032820 | Sub-optimal response post ASCT and R maintenance | sCR/CR rate at 6 months | January 2025 | |
Cilta-cel | CARTITUDE-6 [75] | 3 | NCT05257083 |
| PFS Sustained MRD-neg CR | June 2033 |
CARTITUDE-2 | 2 | NCT04133636 |
| MRD-neg | May 2025 | |
CARTITUDE-5 | 3 | NCT04923893 |
| PFS | June 2026 | |
Antibody–drug conjugates | ||||||
Belantamab mafodotin | GEM-BELA-RVd | 2 | NCT04802356 |
| Safety, AEs | July 2025 |
LCI-HEM-NDMYE-KRDB-001 | 1/2 | NCT04822337 |
| CR rate | October 2024 | |
Winship5382-21 | 2 | NCT05208307 | Belantamab mafodotin plus Pom-dex as post-ASCT maintenance in high-risk patients | CR rate | October 2024 | |
I 797720 | 2 | NCT04876248 | Belantamab mafodotin plus R as post-ASCT maintenance in MRD-pos patients | MRD-neg rate | September 2026 | |
MDACC 2021-0201 | 2 | NCT05091372 | Belantamab mafodotin plus R as MRD-guided post-ASCT maintenance | MRD-pos to MRD-neg rate | March 2025 | |
UPCC 37420 | 2 | NCT04680468 | Belantamab mafodotin prior to ASCT and with R as maintenance | MRD-neg rate | July 2026 | |
DREAMM-9 | 1 | NCT04091126 | Belantamab mafodotin + RVd or Rd, nontransplant setting | Safety, AEs | April 2025 | |
MC1989 | 1/2 | NCT04892264 | Belantamab mafodotin + Dara-Rd, nontransplant setting | CR rate | March 2025 | |
EAE120 | 1/2 | NCT05280275 | Belantamab mafodotin + Dara-Rd, nontransplant setting | Safety, AEs ORR | March 2026 | |
EAE128 | 1/2 | NCT05573802 | Belantamab mafodotin + Rd + nirogacestat, nontransplant setting | Safety, DLTs, AEs ORR | October 2026 | |
EAE-2020 | 1/2 | NCT04808037 | Belantamab mafodotin + Rd, nontransplant setting | Safety, AEs ORR | September 2028 | |
Bispecific antibodies/T cell engagers | ||||||
Teclistamab (BCMA × CD3) | MASTER-2 | 2 | NCT05231629 |
| Sustained MRD-neg rate | December 2026 |
IFM 2021-01 | 2 | NCT05572229 |
| VGPR rate | May 2025 | |
MajesTEC-2 | 1 | NCT04722146 |
| Safety, DLTs | October 2024 | |
MajesTEC-4 [76] | 3 | NCT05243797 | Teclistamab-R vs. R as post-ASCT maintenance | PFS | April 2028 | |
MajesTEC-5/GMMG-HD10 | 2 | NCT05695508 |
| Safety | October 2026 | |
MajesTEC-7 [77] | 3 | NCT05552222 |
| PFS MRD-neg CR | May 2029 | |
GEM-TECTAL | 2 | NCT05849610 |
| MRD-neg CR | January 2025 | |
Elranatamab (BCMA × CD3) | MagnetisMM-7 [78] | 3 | NCT05317416 |
| PFS | August 2027 |
MagnetisMM-6 [79] | 3 | NCT05623020 |
| PFS MRD-neg rate | March 2028 | |
NCI-2024-00110 | 2 | NCT06207799 | Pre-ASCT purging/post-ASCT maintenance | Safety | December 2029 | |
Talquetamab (GPRC5D × CD3) | MonumenTAL-2 | 1 | NCT05050097 |
| Safety DLTs | December 2024 |
Cevostamab (FcRH5 × CD3) | PLYCOM | 1/2 | NCT05583617 |
| Safety, Response rates PFS, OS | March 2026 |
CELMoDs | ||||||
Iberdomide | MIDAS IFM 2020-02 | 3 | NCT04934475 | Iberdomide + Isa vs. R + Isa as post-ASCT maintenance | MRD-neg rate | December 2024 |
EXCALIBER-Maintenance | 3 | NCT05827016 | Iberdomide vs. R maintenance post ASCT | PFS | March 2029 | |
GMMG-HD9/DSMM XVIII | 3 | NCT06216158 | Iberdomide + Isa vs. iberdomide maintenance post ASCT | 2-year MRD-neg rate | December 2028 | |
GEM21menos65 | 3 | NCT05558319 | Iberdomide + Isa-Vd vs. RVd vs. Isa-RVd | MRD-neg rate | April 2027 | |
CC-220-MM-001 | 1/2 | NCT02773030 |
| Safety ORR | July 2026 | |
BOREALIS | 2 | NCT05272826 |
| sCR rate | March 2028 | |
EMN26 [80] | 2 | NCT04564703 |
| Improved efficacy Tolerability | December 2027 | |
IBEX | 2 | NCT06107738 | Iberdomide + SC Dara as post-ASCT maintenance | 12-month MRD-neg rate | December 2025 | |
KID | 1/2 | NCT05199311 |
| AEs CR/sCR rate | November 2025 | |
MSKCC 22-040 | 2 | NCT05354557 |
| CR rate | April 2025 | |
University of Nebraska 852-21 | 2 | NCT05177536 |
| 1-year tolerability | March 2025 | |
IDEAL | 1/2 | NCT05392946 |
| MTD CR rate | May 2027 | |
COMMANDER | 1b/2 | NCT05434689 |
| DLT MRD conversion rate | December 2025 | |
GEM-IBERDARAX | 2 | NCT05527340 |
| ORR CR rate | December 2029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richardson, P.G. The Role of Autologous Stem Cell Transplantation in the Treatment of Newly Diagnosed Multiple Myeloma: Is It Time to Rethink the Paradigm in the Era of Targeted Therapy? Hemato 2024, 5, 144-156. https://doi.org/10.3390/hemato5020012
Richardson PG. The Role of Autologous Stem Cell Transplantation in the Treatment of Newly Diagnosed Multiple Myeloma: Is It Time to Rethink the Paradigm in the Era of Targeted Therapy? Hemato. 2024; 5(2):144-156. https://doi.org/10.3390/hemato5020012
Chicago/Turabian StyleRichardson, Paul G. 2024. "The Role of Autologous Stem Cell Transplantation in the Treatment of Newly Diagnosed Multiple Myeloma: Is It Time to Rethink the Paradigm in the Era of Targeted Therapy?" Hemato 5, no. 2: 144-156. https://doi.org/10.3390/hemato5020012
APA StyleRichardson, P. G. (2024). The Role of Autologous Stem Cell Transplantation in the Treatment of Newly Diagnosed Multiple Myeloma: Is It Time to Rethink the Paradigm in the Era of Targeted Therapy? Hemato, 5(2), 144-156. https://doi.org/10.3390/hemato5020012