Previous Issue
Volume 4, September
 
 

Nanoenergy Adv., Volume 4, Issue 4 (December 2024) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 3548 KiB  
Article
A Coaxial Triboelectric Fiber Sensor for Human Motion Recognition and Rehabilitation via Machine Learning
by Qicheng Ding, Aamir Rasheed, Haonan Zhang, Sara Ajmal, Ghulam Dastgeer, Kamoladdin Saidov, Olim Ruzimuradov, Shavkat Mamatkulov, Wen He and Peihong Wang
Nanoenergy Adv. 2024, 4(4), 355-366; https://doi.org/10.3390/nanoenergyadv4040022 - 4 Dec 2024
Viewed by 651
Abstract
This work presents the fabrication of a coaxial fiber triboelectric sensor (CFTES) designed for efficient energy harvesting and gesture detection in wearable electronics. The CFTES was fabricated using a facile one-step wet-spinning approach, with PVDF-HFP/CNTs/Carbon black as the conductive electrode and PVDF-HFP/MoS2 [...] Read more.
This work presents the fabrication of a coaxial fiber triboelectric sensor (CFTES) designed for efficient energy harvesting and gesture detection in wearable electronics. The CFTES was fabricated using a facile one-step wet-spinning approach, with PVDF-HFP/CNTs/Carbon black as the conductive electrode and PVDF-HFP/MoS2 as the triboelectric layer. The incorporation of 1T phase MoS2 into the PVDF-HFP matrix significantly improves the sensor’s output owing to its electron capture capabilities. The sensor’s performance was carefully optimized by varying the weight percentage of MoS2, the thickness of the fiber core, and the CNT ratio. The optimized CFTES, with a core thickness of 156 µm and 0.6 wt% MoS2, achieved a stable output voltage of ~8.2 V at a frequency of 4 Hz and 10 N applied force, exhibiting remarkable robustness over 3600 s. Furthermore, the CFTES effectively detects human finger gestures, with machine learning algorithms further enhancing its accuracy. This innovative sensor offers a sustainable solution for energy transformation and has promising applications in smart portable power sources and wearable electronic devices. Full article
Show Figures

Figure 1

11 pages, 7620 KiB  
Article
Ultrathin, Stretchable, and Twistable Ferroelectret Nanogenerator for Facial Muscle Detection
by Ziling Song, Xianfa Cai, Zhi Chen, Ziying Zhu, Yunqi Cao and Wei Li
Nanoenergy Adv. 2024, 4(4), 344-354; https://doi.org/10.3390/nanoenergyadv4040021 - 15 Nov 2024
Viewed by 626
Abstract
Ferroelectret nanogenerators (FENGs) have garnered attention due to their unique porous structure and excellent piezoelectric performance. However, most existing FENGs lack sufficient stretchability and flexibility, limiting their application in the field of wearable electronics. In this regard, we have focused on the development [...] Read more.
Ferroelectret nanogenerators (FENGs) have garnered attention due to their unique porous structure and excellent piezoelectric performance. However, most existing FENGs lack sufficient stretchability and flexibility, limiting their application in the field of wearable electronics. In this regard, we have focused on the development of an ultrathin, stretchable, and twistable ferroelectret nanogenerator (UST-FENG) based on Ecoflex, which is made up of graphene, Ecoflex, and anhydrous ethanol, with controllable pore shape and density. The UST-FENG has a thickness of only 860 µm, a fracture elongation rate of up to 574%, and a Young’s modulus of only 0.2 MPa, exhibiting outstanding thinness and excellent stretchability. Its quasi-static piezoelectric coefficient is approximately 38 pC/N. Utilizing this UST-FENG device can enable the recognition of facial muscle movements such as blinking and speaking, thereby helping to monitor people’s facial conditions and improve their quality of life. The successful application of the UST-FENG in facial muscle recognition represents an important step forward in the field of wearable systems for the human face. Full article
Show Figures

Figure 1

16 pages, 4231 KiB  
Article
Mode-Adaptive Surface Pattern Design for Enhanced Triboelectric Nanogenerator Performance
by Masoumeh Karimi Kisomi, Muhammad Sohaib Roomi and M. A. Parvez Mahmud
Nanoenergy Adv. 2024, 4(4), 328-343; https://doi.org/10.3390/nanoenergyadv4040020 - 14 Nov 2024
Viewed by 513
Abstract
Triboelectric nanogenerators (TENGs) are a promising technique for harvesting environmental energy that is based on electrostatic induction and contact electrification. This is a method that uses every relative motion between two electrodes to convert mechanical energy into electrical energy. Several modes of TENGs [...] Read more.
Triboelectric nanogenerators (TENGs) are a promising technique for harvesting environmental energy that is based on electrostatic induction and contact electrification. This is a method that uses every relative motion between two electrodes to convert mechanical energy into electrical energy. Several modes of TENGs are designed based on various relative motions between electrode pairs. As TENGs are a surface phenomenon, properties such as the structure of the electrodes are key parameters that affect their performance. In this paper, in order to identify the best pattern designed adapted to the TENG mode, the effect of surface structures in each mode is investigated numerically. To achieve the best performance of the micro-patterned electrode, a comparative study has been conducted on the four TENG modes under the same conditions. To reach this goal, micro-patterned shapes such as pyramid, spherical, and cube structures are designed, and the open circuit voltage is calculated and compared to a flat surface. The results show that surface modification has a significant role in TENG’s performance. Based on this study, by using a cube-patterned electrode instead of a flat electrode, the output voltage increases from 233 V to 384 V in sliding mode. Also, by applying the spherical pattern, the output voltage is 1.7 times higher than a flat electrode in contact-separation mode. In the case of investigating TENG pattern structure, the results show that the electrical outputs of the patterned layer depend on the mode. The spherical pattern has a higher impact in contact-separation mode compared to the cube pattern. Meanwhile, in sliding mode, the cube pattern has a greater effect. This work provides a hint for designing an effective pattern on electrodes for a particular mode to enhance TENG performance. Full article
Show Figures

Figure 1

10 pages, 7575 KiB  
Article
Initial Study of Reduced Graphene Oxide Foams Modified by Mn and Bi as Capacitive Electrode Materials
by Olena Okhay, Tao Yang and Alexander Tkach
Nanoenergy Adv. 2024, 4(4), 318-327; https://doi.org/10.3390/nanoenergyadv4040019 - 29 Oct 2024
Viewed by 477
Abstract
In a view of application of porous materials in wearable electronics and self-powered systems, reduced graphene oxide (rGO) foams modified by Mn or/and Bi were produced in this study to be used as electrodes for supercapacitors. The hydrothermal method and the freeze-drying processes [...] Read more.
In a view of application of porous materials in wearable electronics and self-powered systems, reduced graphene oxide (rGO) foams modified by Mn or/and Bi were produced in this study to be used as electrodes for supercapacitors. The hydrothermal method and the freeze-drying processes were used for the preparation of the materials further morphologically, elementally and structurally analyzed. Based on the electrochemical characterization, Bi-modified rGO foam was found to be more a promising material for capacitive electrodes in comparison to the other prepared materials. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Figure 1

18 pages, 37870 KiB  
Review
Measuring Physical and Chemical Properties of Single Nanofibers for Energy Applications—Possibilities and Limits
by Tomasz Blachowicz, Nonsikelelo Sheron Mpofu and Andrea Ehrmann
Nanoenergy Adv. 2024, 4(4), 300-317; https://doi.org/10.3390/nanoenergyadv4040018 - 9 Oct 2024
Viewed by 1459
Abstract
Nanofibers can be produced by various techniques, such as a broad range of electrospinning techniques to produce nanofiber mats from different polymers or polymer blends, often filled with metallic or semiconducting nanoparticles or by different nanotechnological bottom-up or top-down methods. They are important [...] Read more.
Nanofibers can be produced by various techniques, such as a broad range of electrospinning techniques to produce nanofiber mats from different polymers or polymer blends, often filled with metallic or semiconducting nanoparticles or by different nanotechnological bottom-up or top-down methods. They are important parts of a wide variety of energy applications, such as batteries, fuel cells, photovoltaics, or hydrogen storage materials. Usually, their physical or chemical parameters are measured by averaging over a fiber bundle or a part of a nanofiber mat. Here, we report the possibility of measuring the different physical and chemical properties of single nanofibers and nanowires. Such measurements of single nanofiber properties are more complicated than investigations of fiber bundles or whole nanofiber mats and, thus, are less often found in the literature. After a fast increase in such investigations between 2001 and 2009, the numbers of respective studies are now stagnating. This review thus aims to make the different possibilities more visible to a broader scientific audience by providing several examples based on atomic force microscopy (AFM) and other broadly available techniques. The focus of this review is on technologies that reveal more information than the pure surface morphology of nanofibers or nanowires, such as mechanical properties or wettability, porosity, or electrical conductivity. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop