Initial Study of Reduced Graphene Oxide Foams Modified by Mn and Bi as Capacitive Electrode Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Graphene Oxide Solution
2.2. Preparation of Foam of Reduced Graphene Oxide Without and with Mn and Bi
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mubarik, S.; Qureshi, N.; Sattar, Z.; Shaheen, A.; Kalsoom, A.; Imran, M.; Hanif, F. Synthetic approach to rice waste-derived carbon-based nanomaterials and their applications. Nanomanufacturing 2021, 1, 109–159. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038–101049. [Google Scholar] [CrossRef]
- Ji, H.; Zhao, X.; Qiao, Z.; Jung, J.; Zhu, Y.; Lu, Y.; Zhang, L.L. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317–3323. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.H.; Hu, L.B.; Liu, N.; Wang, H.L.; Vosgueritchian, M.; Yang, Y.; Cui, Y.; Bao, Z.N. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 2011, 11, 4438–4442. [Google Scholar] [CrossRef]
- Li, M.; Xiao, H.; Zhang, T.; Li, Q.; Zhao, Y. Activated carbon fiber derived from sisal with large specific surface area for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 4716–4723. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Q.; Shi, G. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Räder, H.J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216–4217. [Google Scholar] [CrossRef]
- Buchsteiner, A.; Lerf, A.; Pieper, J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B. 2006, 110, 22328–22338. [Google Scholar] [CrossRef]
- Wang, X.; Shi, G. Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci. 2015, 8, 790–823. [Google Scholar] [CrossRef]
- Yang, J.; Gunasekaran, S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 2013, 51, 36–44. [Google Scholar] [CrossRef]
- Iwama, E.; Kisu, K.; Naoi, W.; Simon, P.; Naoi, K. Chapter 10. Enhanced hybrid supercapacitors utilizing nanostructured metal oxides. In Metal Oxides in Supercapacitors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 247–264. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Liu, Y.; Guo, J.; Yang, B. 2D nickel oxide nanosheets with highly porous structure for high performance capacitive energy storage. J. Phys. D. Appl. Phys. 2018, 51, 045302. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Hao, Y.; Yang, X.; Goddard, W.A., III; Zhang, X.L.; Cao, B. Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Younis, A.; Chu, D. A facile and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 2016, 8, 165–173. [Google Scholar] [CrossRef]
- Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190. [Google Scholar] [CrossRef]
- Wang, J.G.; Kang, F.Y.; Wei, B.Q. Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 2015, 74, 51–124. [Google Scholar] [CrossRef]
- Xu, P.; Wei, B.Q.; Cao, Z.Y.; Zheng, J.; Gong, K.; Li, F.X.; Yu, J.Y.; Li, Q.W.; Lu, W.B.; Byun, J.H.; et al. Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers. ACS Nano 2015, 9, 6088–6096. [Google Scholar] [CrossRef]
- Jabeen, N.; Xia, Q.Y.; Savilov, S.V.; Aldoshin, S.M.; Yu, Y.; Xia, H. Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interfaces 2016, 8, 33732–33740. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, R.; Chu, Y.H.; Yang, W.D. Facile fabrication of MnO2/graphene/Ni foam composites for high-performance supercapacitors. Nanomaterials 2021, 11, 2736–2743. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Wang, J.; Seveno, D.; Fransaer, J.; Locquet, J.P.; Seo, J.W. Carbon nanotube fibers decorated with MnO2 for wire-shaped supercapacitor. Molecules 2021, 26, 3479–3497. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.-N.; Zhu, S.-K.; Ning, J.; Yang, X.-F.; Hu, M.-Y.; Shao, J.-J. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review. New Carbon. Mater. 2021, 36, 702–710. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. [Google Scholar] [CrossRef]
- Marina, P.E.; Ali, G.A.; See, L.M.; Teo, E.Y.L.; Ng, E.-P.; Chong, K.F. In situ growth of redox-active iron-centered nanoparticles on graphene sheets for specific capacitance enhancement. Arabian J. Chem. 2019, 12, 3883–3889. [Google Scholar] [CrossRef]
- Ciszewski, M.; Mianowski, A.; Szatkowski, P.; Nawrat, G.; Adamek, J. Reduced graphene oxide-bismuth oxide composite as electrode material for supercapacitors. Ionics 2015, 21, 557–563. [Google Scholar] [CrossRef]
- Yang, W.-D.; Lin, Y.-J. Preparation of rGO/Bi2O3 composites by hydrothermal synthesis for supercapacitor electrode. J. Electr. Eng. 2019, 70, 101–106. [Google Scholar] [CrossRef]
- Ghule, B.G.; Shinde, N.M.; Nakate, Y.T.; Jang, J.-H.; Mane, R.S. Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 651, 129690. [Google Scholar] [CrossRef]
- Hounkanrin, S.R.J.E.; Guo, Z.; Luo, J. Microwave-synthesized bismuth oxide-graphene oxide composite as an electrode for supercapacitors. Int. J. Electrochem. Sci. 2023, 18, 100086. [Google Scholar] [CrossRef]
- Deng, L.; Liu, J.; Ma, Z.; Fan, G.; Liu, Z.-H. Free-standing graphene/bismuth vanadate monolith composite as a binder-free electrode for symmetrical supercapacitors. RSC Adv. 2018, 8, 24796. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, M.; Sun, J.; Gao, L. Fabrication of Ni-Co binary oxide/reduced graphene oxide composite with high capacitance and cyclicity as efficient electrode for supercapacitors. Ionics 2016, 22, 535–544. [Google Scholar] [CrossRef]
- Ramesh, S.; Karuppasamy, K.; Msolli, S.; Kim, H.S.; Kim, H.S.; Kim, J.H. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New J. Chem. 2017, 41, 15517–15527. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A.; Gallo, M.J.H.; Otero-Irurueta, G.; Mikhalev, S.; Staiti, P.; Lufrano, F. Energy storage of supercapacitor electrodes on carbon cloth enhanced by graphene oxide aerogel reducing conditions. J. Energy Storage 2020, 32, 101839. [Google Scholar] [CrossRef]
- Cui, X.; Lv, R.; Sagar, R.U.R.; Liu, C.; Zhang, Z. Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim. Acta 2015, 169, 342–350. [Google Scholar] [CrossRef]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Li, J.; Tang, J.; Yuan, J.; Zhang, K.; Yu, X.; Sun, Y.; Zhang, H.; Qin, L.-C. Porous carbon nanotube/graphene composites for high-performance supercapacitors. Chem. Phys. Lett. 2018, 693, 60–65. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, P.; Jiang, Y.; Pan, D.; Tao, H.; Song, J.; Fang, T.; Xu, W. Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 2012, 198, 423–427. [Google Scholar] [CrossRef]
- Alazmi, A.; El Tall, O.; Rasul, S.; Hedhili, M.N.; Patole, S.P.; Costa, P.M.F.J. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale 2016, 8, 17782. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Girard, H.-L.; Wang, H.; d’Entremont, A.; Pilon, L. Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors. J. Phys. Chem. C. 2015, 119, 11349–11361. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Penner, R.M. Energy storage in nanomaterials—Capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide—Carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhay, O.; Yang, T.; Tkach, A. Initial Study of Reduced Graphene Oxide Foams Modified by Mn and Bi as Capacitive Electrode Materials. Nanoenergy Adv. 2024, 4, 318-327. https://doi.org/10.3390/nanoenergyadv4040019
Okhay O, Yang T, Tkach A. Initial Study of Reduced Graphene Oxide Foams Modified by Mn and Bi as Capacitive Electrode Materials. Nanoenergy Advances. 2024; 4(4):318-327. https://doi.org/10.3390/nanoenergyadv4040019
Chicago/Turabian StyleOkhay, Olena, Tao Yang, and Alexander Tkach. 2024. "Initial Study of Reduced Graphene Oxide Foams Modified by Mn and Bi as Capacitive Electrode Materials" Nanoenergy Advances 4, no. 4: 318-327. https://doi.org/10.3390/nanoenergyadv4040019
APA StyleOkhay, O., Yang, T., & Tkach, A. (2024). Initial Study of Reduced Graphene Oxide Foams Modified by Mn and Bi as Capacitive Electrode Materials. Nanoenergy Advances, 4(4), 318-327. https://doi.org/10.3390/nanoenergyadv4040019