Previous Issue
Volume 5, March
 
 

Nanoenergy Adv., Volume 5, Issue 2 (June 2025) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
48 pages, 3881 KiB  
Review
Advances and Perspectives on Bioelectronic and Atomic Nanogenerators for Anticancer Therapy
by Massimo Mariello
Nanoenergy Adv. 2025, 5(2), 4; https://doi.org/10.3390/nanoenergyadv5020004 - 31 Mar 2025
Viewed by 27
Abstract
Nowadays, due to improvements in living standards, more attention is reserved to all-around disease prevention and health care. In particular, research efforts have been made for developing novel methods and treatments for anti-cancer therapy. Self-powered nanogenerators have emerged in recent years as an [...] Read more.
Nowadays, due to improvements in living standards, more attention is reserved to all-around disease prevention and health care. In particular, research efforts have been made for developing novel methods and treatments for anti-cancer therapy. Self-powered nanogenerators have emerged in recent years as an attractive cost-effective technology to harvest energy or for biosensing applications. Bioelectronic nanogenerators can be used for inducing tissue recovery and for treating human illness through electrical stimulation. However, there is still a lack of comprehensive cognitive assessment of these devices and platforms, especially regarding which requirements must be satisfied and which working principles for energy transduction can be adopted effectively in the body. This review covers the most recent advances in bioelectronic nanogenerators for anti-cancer therapy, based on different transducing strategies (photodynamic therapy, drug delivery, electrical stimulation, atomic nanogenerators, etc.), and the potential mechanisms for tissue repair promotion are discussed. The prospective challenges are finally summarized with an indication of a future outlook. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop