Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

Textiles, Volume 4, Issue 1 (March 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 1183 KiB  
Article
Cotton Fiber Strength Measurement and Its Relation to Structural Properties from Fourier Transform Infrared Spectroscopic Characterization
by Yongliang Liu
Textiles 2024, 4(1), 126-137; https://doi.org/10.3390/textiles4010009 - 19 Mar 2024
Viewed by 1498
Abstract
There has been an interest in understanding the relationship between textile cotton fiber strength (or tenacity) and structure for better fiber quality measurement and enhancement. This study utilized coupled Stelometer and high volume instrument (HVI) measurements with attenuated total reflection Fourier transform infrared [...] Read more.
There has been an interest in understanding the relationship between textile cotton fiber strength (or tenacity) and structure for better fiber quality measurement and enhancement. This study utilized coupled Stelometer and high volume instrument (HVI) measurements with attenuated total reflection Fourier transform infrared spectroscopy methods to relate fiber strength and associated properties (Stelometer elongation and HVI micronaire) with structure properties on six Upland (as A, B, C, D, E, and F) and one Pima cultivar. Although Stelometer tenacity agreed with HVI strength in general, the Upland D cultivar (immature) was observed to show the lowest HVI strength value, while the Upland F cultivar (larger infrared crystallinity index) was found to possess the smallest Stelometer tenacity value. A few strong and significant correlations were noted, for example, between infrared crystallinity and Stelometer elongation for the Upland A fibers, between infrared maturity and Stelometer tenacity for the Upland C fibers, and between infrared maturity and HVI strength for the Upland D fibers. Furthermore, there were apparent distinctions in regressions and statistics of examined correlations between each Upland cultivar and their combined fiber set, addressing the challenge of understanding the unique response between fiber physical and structure properties from different measurements even within one cotton cultivar. Full article
Show Figures

Graphical abstract

22 pages, 14238 KiB  
Article
Biosynthesis of Gold- and Silver-Incorporated Carbon-Based Zinc Oxide Nanocomposites for the Photodegradation of Textile Dyes and Various Pharmaceuticals
by Dineo A. Bopape, David E. Motaung and Nomso C. Hintsho-Mbita
Textiles 2024, 4(1), 104-125; https://doi.org/10.3390/textiles4010008 - 5 Mar 2024
Cited by 3 | Viewed by 1374
Abstract
Wastewater contaminated with dyes from the textile industry has been at the forefront in the last few decades, thus, it is imperative to find treatment methods that are safe and efficient. In this study, C. benghalensis plant extracts were used to synthesise by [...] Read more.
Wastewater contaminated with dyes from the textile industry has been at the forefront in the last few decades, thus, it is imperative to find treatment methods that are safe and efficient. In this study, C. benghalensis plant extracts were used to synthesise by mass 20 mg/80 mg zinc oxide–carbon spheres (20/80 ZnO–CSs) nanocomposites, and the incorporation of the nanocomposites with 1% silver (1% Ag–ZnO–CSs) and 1% gold (1% Au–ZnO–CSs) was conducted. The impact of Ag and Au dopants on the morphological, optical, and photocatalytic properties of these nanocomposites in comparison to 20/80 ZnO–CSs was investigated. TEM, XRD, UV-vis, FTIR, TGA, and BET revealed various properties for these nanocomposites. TEM analysis revealed spherical particles with size distributions of 40–80 nm, 50–200 nm, and 50–250 nm for 1% Ag–ZnO–CSs, 1% Au–ZnO–CSs, and 20/80 ZnO–CSs, respectively. XRD data showed peaks corresponding to Ag, Au, ZnO, and CSs in all nanocomposites. TGA analysis reported a highly thermally stable material in ZnO-CS. The photocatalytic testing showed the 1% Au–ZnO–CSs to be the most efficient catalyst with a 98% degradation for MB textile dye. Moreover, 1% Au–ZnO–CSs also exhibited high degradation percentages for various pharmaceuticals. The material could not be reused and the trapping studies demonstrated that both OH• radicals and the e play a crucial role in the degradation of the MB. The photocatalyst in this study demonstrated effectiveness and high flexibility in degrading diverse contaminants. Full article
Show Figures

Graphical abstract

13 pages, 2344 KiB  
Article
OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode
by Carmela Tania Prontera, Marco Pugliese, Fabrizio Mariano, Daniela Taurino, Roberto Giannuzzi, Vitantonio Primiceri, Marco Esposito, Antonio Andretta, Giuseppe Gigli and Vincenzo Maiorano
Textiles 2024, 4(1), 91-103; https://doi.org/10.3390/textiles4010007 - 15 Feb 2024
Cited by 1 | Viewed by 1660
Abstract
Textile-based electronics represents a key technology for the development of wearable devices. Light-emitting textiles based on OLED architecture are particularly promising due to their intrinsic flexibility and possibility to be fabricated on large areas using scalable processes. Fabric planarization is one of the [...] Read more.
Textile-based electronics represents a key technology for the development of wearable devices. Light-emitting textiles based on OLED architecture are particularly promising due to their intrinsic flexibility and possibility to be fabricated on large areas using scalable processes. Fabric planarization is one of the most critical issues in their fabrication. Here we report a fast, simple, and industrially scalable planarization method based on the transfer of surface morphological properties from silicon to fabric. A liquid resin is used as a planarization layer, and by exploiting the low roughness of a ‘guide substrate’ it is possible to replicate the smooth and uniform surface from the silicon to the planarization layer. The result is a fabric with a flat and homogeneous polymer layer on its surface, suitable for OLED fabrication. In particular, the effect of resin viscosity on the surface morphology was evaluated to obtain the best planarization layer. The best device shows high luminance and current efficiency values, even after 1000 bending cycles. We also explored the possibility of tuning the color emitted by the device by using a fluorescent fabric as a down-converting layer. Thanks to this approach, it is in principle possible to achieve white emission from a very simple device architecture. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Figure 1

21 pages, 6866 KiB  
Article
Functionalization of Technical Textiles with Chitosan
by Kristina Klinkhammer, Hanna Hohenbild, Mohammad Toufiqul Hoque, Laura Elze, Helen Teshay and Boris Mahltig
Textiles 2024, 4(1), 70-90; https://doi.org/10.3390/textiles4010006 - 15 Feb 2024
Cited by 2 | Viewed by 2165
Abstract
Textiles are used for many different applications and require a variety of properties. Wet functionalization improve textiles’ properties, such as hydrophilicity or antimicrobial activity. Chitosan is a bio-based polymer widely investigated in the textile industry for this purpose. A weaving comprising a cotton/polyester [...] Read more.
Textiles are used for many different applications and require a variety of properties. Wet functionalization improve textiles’ properties, such as hydrophilicity or antimicrobial activity. Chitosan is a bio-based polymer widely investigated in the textile industry for this purpose. A weaving comprising a cotton/polyester mix and a pure-polyester weaving was functionalized with different concentrations of chitosan to determine the most robust method for chitosan detection in both cotton- and polyester-containing materials. Additionally, mixtures of chitosan with 3-glycidyloxypropyltriethoxy silane (GLYEO) or 3-aminopropyltriethoxy silane (AMEO) were applied in a one-step or two-step procedure on the same fabrics. Scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) and dyeing with Remazol Brilliant Red F3B demonstrated the presence of chitosan and silanes on the textiles’ surfaces. While non-functionalized textiles were not stained, the dependency of the dyeing depths on the chitosan concentrations enabled us to infer the efficacy of the very short processing time and a mild dyeing temperature. The one-step application of AMEO and chitosan resulted in the highest presence of silicon on the textile and the greatest color intensity. The functionalization with GLYEO reduced the water sink-in time of polyester, while chitosan-containing solutions increased the hydrophobicity of the material. Washing experiments demonstrated the increasing hydrophilicity of the cotton/polyester samples, independent of the type of functionalization. These experiments show that chitosan-containing recipes can be used as part of a useful method, and the type of functionalization can be used to adjust the hydrophilic properties of polyester and cotton/polyester textiles. Via this first step, in the future, new combinations of bio-based polymers with inorganic binder systems can be developed, ultimately leading to sustainable antimicrobial materials with modified hydrophilic properties. Full article
Show Figures

Graphical abstract

13 pages, 1940 KiB  
Article
Comparative Analysis of Electrokinetic Properties of Periodate- and TEMPO-Oxidized Regenerated Cellulose Fabric Functionalized with Chitosan
by Ana Kramar, Matea Korica and Mirjana Kostić
Textiles 2024, 4(1), 57-69; https://doi.org/10.3390/textiles4010005 - 8 Feb 2024
Cited by 1 | Viewed by 1207
Abstract
The electrokinetic properties of materials give useful insight into the behavior of surfaces in contact with liquids and other compounds and their quantification is a powerful tool to predict their behavior during further processing and application, especially in textile materials. In this work, [...] Read more.
The electrokinetic properties of materials give useful insight into the behavior of surfaces in contact with liquids and other compounds and their quantification is a powerful tool to predict their behavior during further processing and application, especially in textile materials. In this work, we perform a comparative analysis of influence of the two most common selective oxidative protocols for viscose (regenerated cellulose) fabrics on subsequent functionalization with chitosan, and cellulose fabrics’ electrokinetic properties, zeta potential in a pH range of approx. 3–10, and isoelectric point (IEP). For oxidation before deposition of chitosan, sodium periodate and 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) were used. The content of functional groups in oxidized cellulose fabric (carboxyl and carbonyl groups) was determined by titration methods, while amino functional groups’ availability in samples with chitosan was determined using the CI acid orange 7 dye absorption method. This study reveals that the periodate oxidation (PO) of cellulose is more effective for binding chitosan onto material, which gave rise to higher availability of amino groups onto cellulose/chitosan material, which also influenced the shift in zeta potential curve towards positive values at a pH below 5. Analysis of a relationship between zeta potential increase at pH 4.4 and amino groups’ amount measured using absorption of CI acid orange 7 dye at pH 4.4 revealed dependency that can be fitted linearly or exponentially, with the latter providing the better fit (R2 = 0.75). Full article
Show Figures

Figure 1

17 pages, 9511 KiB  
Article
Effect of Number of Layers on Tensile and Flexural Behavior of Cementitious Composites Reinforced with a New Sisal Fabric
by Adilson Brito de Arruda Filho, Paulo Roberto Lopes Lima, Ricardo Fernandes Carvalho, Otavio da Fonseca Martins Gomes and Romildo Dias Toledo Filho
Textiles 2024, 4(1), 40-56; https://doi.org/10.3390/textiles4010004 - 1 Feb 2024
Viewed by 1324
Abstract
The use of fabric in reinforcing cement-based materials expands their applications for various types of construction elements. Additionally, employing renewable sources of plant-based fabrics contributes to reducing the environmental impact of the construction industry. However, the variability in the properties of plant fibers [...] Read more.
The use of fabric in reinforcing cement-based materials expands their applications for various types of construction elements. Additionally, employing renewable sources of plant-based fabrics contributes to reducing the environmental impact of the construction industry. However, the variability in the properties of plant fibers and fabrics necessitates prior studies to confirm their effectiveness as reinforcement materials. In this study, a new sisal fabric was produced and utilized as reinforcement in cement-based matrix composites. The sisal fibers, yarns, and fabrics produced were tested under direct tension. Five composites were manufactured by manual lamination, with reinforcement ranging from one to five layers, and were subjected to direct tension and flexural testing. The results indicate that, while the fiber shows brittle failure, the yarn and fabric exhibit a gradual loss of strength after reaching the maximum tension. All composites display strain-hardening and deflection-hardening behavior, with multiple cracking and an increase in tension and deformation before rupture. The mechanical properties exhibited improvement with an increase in the number of layers, and composites with four and five layers displayed distinct behavior, demonstrating increased stiffness after the occurrence of multiple cracking and a better mechanical performance, qualifying them for use as a construction element. Full article
Show Figures

Figure 1

14 pages, 54797 KiB  
Article
Mechanical Property Characterization of Architectural Coated Woven Fabrics Subjected to Freeze–Thaw Cycles
by Hastia Asadi, Joerg Uhlemann, Natalie Stranghoener and Mathias Ulbricht
Textiles 2024, 4(1), 26-39; https://doi.org/10.3390/textiles4010003 - 11 Jan 2024
Cited by 1 | Viewed by 6034
Abstract
This paper presents experimental investigations into the freeze–thaw response of two common architectural coated woven fabrics. Strip specimens for the tensile tests were exposed to −20 °C for three hours followed by three hours of thaw at ambient temperatures. This was repeated for [...] Read more.
This paper presents experimental investigations into the freeze–thaw response of two common architectural coated woven fabrics. Strip specimens for the tensile tests were exposed to −20 °C for three hours followed by three hours of thaw at ambient temperatures. This was repeated for a maximum of 100 cycles. Afterwards, the residual tensile strength was measured and compared to results achieved for test specimens without prior freeze–thaw cycles. Maximum mean tensile strength reductions of approximately 21% (warp direction) and 19% (weft direction) for probed polytetrafluoroethylene (PTFE)-coated woven glass fiber fabrics were identified, while no remarkable tensile strength deterioration rate was observed for the investigated polyvinyl chloride-coated woven polyethylene terephthalate materials. Overall, the results indicate that freeze–thaw cycles can have a significant deteriorating impact on the mechanical properties of glass-PTFE fabrics. Full article
Show Figures

Figure 1

9 pages, 240 KiB  
Review
Sensory Considerations for Emerging Textile Applications
by Emma Kay, Jessica Levick, Tawanda Machingura and Stephen Bird
Textiles 2024, 4(1), 17-25; https://doi.org/10.3390/textiles4010002 - 4 Jan 2024
Viewed by 2528
Abstract
Textiles are increasingly playing a role as a therapeutic medium in the disability field as well as in everyday life. This paper aims to review the literature on the relationship between textiles and sensory integration or sensory preferences in the general population. A [...] Read more.
Textiles are increasingly playing a role as a therapeutic medium in the disability field as well as in everyday life. This paper aims to review the literature on the relationship between textiles and sensory integration or sensory preferences in the general population. A brief literature review was conducted using PubMed (MEDLINE), SCOPUS, and Google Scholar. The review of the current literature highlights some key themes in the literature, including the indication that adaptive and sensory clothing design requires consideration of the textiles and fabrics being used, the functionality and appearance of garments, and affordability and access. The evidence suggests that clothing design should utilize soft fabrics which are seamless, have limited external tags, support social participation and functional engagement in daily activities, and are accessible. Full article
16 pages, 3565 KiB  
Article
Antimicrobial Properties of Polyester/Copper Nanocomposites by Melt-Spinning and Melt-Blowing Techniques
by Alain González-Sánchez, Ricardo Rosas-Macías, José E. Hernández-Bautista, Janett A. Valdez-Garza, Nayeli Rodríguez-Fuentes, Florentino Soriano-Corral, Antonio S. Ledezma-Pérez, Carlos A. Ávila-Orta and Víctor J. Cruz-Delgado
Textiles 2024, 4(1), 1-16; https://doi.org/10.3390/textiles4010001 - 25 Dec 2023
Cited by 1 | Viewed by 1997
Abstract
In this study, textile fiber prototypes based on polyester and different Cu nanoparticles (CuNP) content were produced using melt-spinning to obtain bi-component multifilament fibers and melt-blowing to obtain non-woven fabrics. The prototypes were tested against pathogenic microorganisms such as S. aureus, E. [...] Read more.
In this study, textile fiber prototypes based on polyester and different Cu nanoparticles (CuNP) content were produced using melt-spinning to obtain bi-component multifilament fibers and melt-blowing to obtain non-woven fabrics. The prototypes were tested against pathogenic microorganisms such as S. aureus, E. coli, and C. albicans. It was shown that bi-component fibers offer excellent protection against pathogens, with up to 99% growth inhibition with 0.5% w/w for S. aureus and E. coli; meanwhile, non-woven fabric only shows activity against E. coli from 0.1% w/w of CuNP. Using different analytical techniques, it was possible to identify that the CuNP were confined exclusively in the outer cover of the bi-component fibers which may be associated with increased antimicrobial activity compared to the fibers in the non-woven fabric. The use of polymeric nanocomposites based on polyester/copper offers an alternative of great interest due to the versatility of the raw material and the high efficiency of copper nanoparticles as an antimicrobial additive. Full article
(This article belongs to the Special Issue Advances of Medical Textiles)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop