Advances in Smart Textiles

A special issue of Textiles (ISSN 2673-7248).

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4988

Special Issue Editor

Special Issue Information

Dear Colleagues,

Smart textiles can broadly refer to fibers, fabrics and garments that can sense and respond to external stimuli, such as temperature, humidity, light, pressure, and electronic magnetic fields, and others. With the continuous improvement of science and technology, the application of smart textiles in various fields has developed rapidly, including in medicine, electronics, national defense, construction, transportation, sports, protection and so on. As the functions of smart textiles become more diversified, the challenges that follow are increasing. How to improve the quality and safety of smart textiles is a dilemma to be solved in the textile industry.

This Special Issue aims to present the latest research on smart textiles in various fields, with the goal of developing practical smart textile technologies to promote the sustainable, long-term development of the textile industry.

It is with great pleasure that we invite you to submit a manuscript related to smart textiles for this Special Issue. Remarkable contributions including research articles, communications and reviews from experts all over the world are welcome.

Dr. Jun Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Textiles is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart textiles
  • wearable
  • bioelectronics
  • sensors
  • therapeutics
  • energy
  • bio-inspired
  • self-cleaning
  • actuators
  • design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 2033 KiB  
Article
Towards Single-Polymer-Based Fully Printed Textile-Based Flexible Ag2O-Zn Battery for Wearable Electronics
by Akash Kota, Kavya Vallurupalli, Amy T. Neidhard-Doll and Vamsy P. Chodavarapu
Textiles 2024, 4(2), 256-266; https://doi.org/10.3390/textiles4020015 - 19 May 2024
Viewed by 668
Abstract
Printed textile-based flexible batteries are gaining attention in several applications, but they are becoming more relevant to the health care industry in terms of realizing wearable and skin-conformable electronic devices. A flexible battery must ideally be deformable along multiple directions. In this work, [...] Read more.
Printed textile-based flexible batteries are gaining attention in several applications, but they are becoming more relevant to the health care industry in terms of realizing wearable and skin-conformable electronic devices. A flexible battery must ideally be deformable along multiple directions. In this work, with an aim to develop a fully printed omnidirectional deformable battery, we report the fabrication process of a novel single-polymer-based flexible non-rechargeable planar Ag2O-Zn battery on a textile substrate using the stencil printing method. Except for the electrolyte, all the components of the battery, including the current collectors, the anode, the cathode, and the separator membrane, are fabricated using a single polymer, namely styrene–ethylene–butylene–styrene (SEBS). To fabricate the SEBS separator, we introduce the solvent evaporation-induced phase separation (SEIPS) process. In the SEIPS method, toluene and dimethyl sulfoxide (DMSO) are selected as the solvent–nonsolvent pair. The SEBS: toluene: DMSO system with a wt% ratio of 6:85:9 showed improved performance regarding the OCV tests. A polyacrylic acid (PAA)-based alkaline polymer gel is used as an electrolyte. The demonstrated process is simple, and, with suitable modifications, it should find its use in the development of digitally printed alkaline batteries. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Figure 1

19 pages, 9357 KiB  
Article
Quantification of Fundamental Textile Properties of Electronic Textiles Fabricated Using Different Techniques
by Arash M. Shahidi, Kalana Marasinghe, Parvin Ebrahimi, Jane Wood, Zahra Rahemtulla, Philippa Jobling, Carlos Oliveira, Tilak Dias and Theo Hughes-Riley
Textiles 2024, 4(2), 218-236; https://doi.org/10.3390/textiles4020013 - 3 May 2024
Viewed by 1639
Abstract
Electronic textiles (E-textiles) have experienced an increase in interest in recent years leading to a variety of new concepts emerging in the field. Despite these technical innovations, there is limited literature relating to the testing of E-textiles for some of the fundamental properties [...] Read more.
Electronic textiles (E-textiles) have experienced an increase in interest in recent years leading to a variety of new concepts emerging in the field. Despite these technical innovations, there is limited literature relating to the testing of E-textiles for some of the fundamental properties linked to wearer comfort. As such, this research investigates four fundamental properties of E-textiles: air permeability, drape, heat transfer, and moisture transfer. Three different types of E-textiles were explored: an embroidered electrode, a knitted electrode, and a knitted structure with an embedded electronic yarn. All of the E-textiles utilized the same base knitted fabric structure to facilitate a comparative study. The study used established textile testing practices to evaluate the E-textiles to ascertain the suitability of these standards for these materials. The study provides a useful point of reference to those working in the field and highlights some limitations of existing textile testing methodologies when applied to E-textiles. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Graphical abstract

13 pages, 2344 KiB  
Article
OLEDs on Down-Converting Fabric by Using a High Scalable Planarization Process and a Transparent Polymeric Electrode
by Carmela Tania Prontera, Marco Pugliese, Fabrizio Mariano, Daniela Taurino, Roberto Giannuzzi, Vitantonio Primiceri, Marco Esposito, Antonio Andretta, Giuseppe Gigli and Vincenzo Maiorano
Textiles 2024, 4(1), 91-103; https://doi.org/10.3390/textiles4010007 - 15 Feb 2024
Viewed by 1145
Abstract
Textile-based electronics represents a key technology for the development of wearable devices. Light-emitting textiles based on OLED architecture are particularly promising due to their intrinsic flexibility and possibility to be fabricated on large areas using scalable processes. Fabric planarization is one of the [...] Read more.
Textile-based electronics represents a key technology for the development of wearable devices. Light-emitting textiles based on OLED architecture are particularly promising due to their intrinsic flexibility and possibility to be fabricated on large areas using scalable processes. Fabric planarization is one of the most critical issues in their fabrication. Here we report a fast, simple, and industrially scalable planarization method based on the transfer of surface morphological properties from silicon to fabric. A liquid resin is used as a planarization layer, and by exploiting the low roughness of a ‘guide substrate’ it is possible to replicate the smooth and uniform surface from the silicon to the planarization layer. The result is a fabric with a flat and homogeneous polymer layer on its surface, suitable for OLED fabrication. In particular, the effect of resin viscosity on the surface morphology was evaluated to obtain the best planarization layer. The best device shows high luminance and current efficiency values, even after 1000 bending cycles. We also explored the possibility of tuning the color emitted by the device by using a fluorescent fabric as a down-converting layer. Thanks to this approach, it is in principle possible to achieve white emission from a very simple device architecture. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 3715 KiB  
Review
A Review of the Electrical Conductivity Test Methods for Conductive Fabrics
by Zeyue Xie, Heura Ventura and Monica Ardanuy
Textiles 2024, 4(3), 284-308; https://doi.org/10.3390/textiles4030017 - 22 Jun 2024
Viewed by 721
Abstract
With the substantial growth of the smart textiles market, electrical properties are becoming a basic requirement for most of the advanced textiles used in the development of wearable solutions and other textile-based smart applications. Depending on the textile substrate, the test method to [...] Read more.
With the substantial growth of the smart textiles market, electrical properties are becoming a basic requirement for most of the advanced textiles used in the development of wearable solutions and other textile-based smart applications. Depending on the textile substrate, the test method to determine the electrical properties can be different. Unlike smart fibers and yarns, the characterization of the electrical properties of fabrics cannot be tested between two connection points because the result would not represent the behavior of the entire fabric, so the electrical properties must be related to an area. The parameters used to characterize the electrical properties of the fabrics include resistance, resistivity, and conductivity. Although all of them can be used to indicate electrical performance, there are significant differences between them and different methods available for their determination, whose suitability will depend on the function and the textile substrate. This paper revises the main parameters used to characterize the electrical properties of conductive fabrics and summarizes the most common methods used to test them. It also discusses the suitability of each method according to several intervening factors, such as the type of conductive fabric (intrinsically or extrinsically conductive), its conductivity range, other fabric parameters, or the final intended application. For intrinsically conductive woven fabrics, all the methods are suitable, but depending on the requirements of conductivity accuracy, the contact resistance from the measuring system should be determined. For intrinsically conductive knitted fabrics, two-point probe, Van der Pauw, and eddy current methods are the most suitable. And for intrinsically conductive nonwoven fabrics, two-point probe and four-point probe methods are the most appropriate. In the case of extrinsically conductive fabrics, the applied method should depend on the substrate and the properties of the conductive layer. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Figure 1

Back to TopTop