Previous Issue
Volume 4, June
 
 

Textiles, Volume 4, Issue 3 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 24785 KiB  
Article
Added-Value of Cotton Textile Waste for Nonwoven Applications
by Lúcia Rodrigues, Rita Marques, Juliana C. Dias, Beatriz Magalhães, Anabela Santos, Cláudia Amorim, Ana Margarida Carta, Paula Pinto and Carla J. Silva
Textiles 2024, 4(3), 309-327; https://doi.org/10.3390/textiles4030018 - 1 Jul 2024
Viewed by 326
Abstract
Due to the continuous optimization of cutting plans, the cotton scrap size resulting from the cutting of components for clothing production (post-industrial residues) is often considered insufficient to obtain fibres with the proper length to produce a new yarn through mechanical recycling processes; [...] Read more.
Due to the continuous optimization of cutting plans, the cotton scrap size resulting from the cutting of components for clothing production (post-industrial residues) is often considered insufficient to obtain fibres with the proper length to produce a new yarn through mechanical recycling processes; so it is important to search for other applications for these wastes. In this context, small pieces of cotton were submitted to a shredding process to obtain recycled fibres. Cotton small pieces and recycled fibres were then submitted to a refining process to achieve refined fibres. Using these materials alone and in blends with refined and unrefined bleached eucalyptus kraft pulp (BEKP), wet-laid nonwovens were developed and characterized. An analysis of the results revealed that the replacement of unrefined BEKP by 70% cotton waste fibres in wet-laid nonwovens, reducing the use of virgin raw material, enhances the structures’ mechanical properties by 80% and 14%, for small pieces or recycled fibres, respectively. Additionally, refining small pieces of cotton seems to be more promising than refining recycled fibres, because less steps are required to obtain wet-laid nonwovens with better mechanical properties. These results highlight the potential of this approach to be explored further for different products and end applications. Full article
Show Figures

Figure 1

25 pages, 3715 KiB  
Review
A Review of the Electrical Conductivity Test Methods for Conductive Fabrics
by Zeyue Xie, Heura Ventura and Monica Ardanuy
Textiles 2024, 4(3), 284-308; https://doi.org/10.3390/textiles4030017 - 22 Jun 2024
Viewed by 418
Abstract
With the substantial growth of the smart textiles market, electrical properties are becoming a basic requirement for most of the advanced textiles used in the development of wearable solutions and other textile-based smart applications. Depending on the textile substrate, the test method to [...] Read more.
With the substantial growth of the smart textiles market, electrical properties are becoming a basic requirement for most of the advanced textiles used in the development of wearable solutions and other textile-based smart applications. Depending on the textile substrate, the test method to determine the electrical properties can be different. Unlike smart fibers and yarns, the characterization of the electrical properties of fabrics cannot be tested between two connection points because the result would not represent the behavior of the entire fabric, so the electrical properties must be related to an area. The parameters used to characterize the electrical properties of the fabrics include resistance, resistivity, and conductivity. Although all of them can be used to indicate electrical performance, there are significant differences between them and different methods available for their determination, whose suitability will depend on the function and the textile substrate. This paper revises the main parameters used to characterize the electrical properties of conductive fabrics and summarizes the most common methods used to test them. It also discusses the suitability of each method according to several intervening factors, such as the type of conductive fabric (intrinsically or extrinsically conductive), its conductivity range, other fabric parameters, or the final intended application. For intrinsically conductive woven fabrics, all the methods are suitable, but depending on the requirements of conductivity accuracy, the contact resistance from the measuring system should be determined. For intrinsically conductive knitted fabrics, two-point probe, Van der Pauw, and eddy current methods are the most suitable. And for intrinsically conductive nonwoven fabrics, two-point probe and four-point probe methods are the most appropriate. In the case of extrinsically conductive fabrics, the applied method should depend on the substrate and the properties of the conductive layer. Full article
(This article belongs to the Special Issue Advances in Smart Textiles)
Show Figures

Figure 1

Previous Issue
Back to TopTop