A Computational Approach to Demonstrate the Control of Gene Expression via Chromosomal Access in Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Project Overview and Reproducibility
2.2. Data Preprocessing and Indexing
- conda activate base
- conda create -c conda-forge -c bioconda -n snakemake snakemake
- conda activate snakemake
- cd workflow
- sh scripts/createCondaConfigurations.sh
- snakemake../results/“A”, “B”, “C”.results/matchingSiteTable.csv—use-conda
2.3. Peak Calling
2.4. Motif Identification and Site Matching
2.5. Motif Comparison
2.6. Determination of Differentially Expressed Genes
2.7. Creation of Genome Tracks
3. Results and Discussion
3.1. Chromatin Accessibility across the CRC Genome
3.2. Correlation between Chromatin Access and Gene Expression
3.3. Motif Comparison
3.4. Integrated Mutation Data and Interaction of Gene Regulation Mechanisms
3.5. Gene Regulation Mechanisms in CRC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todeschini, A.L.; Georges, A.; Veitia, R.A. Transcription factors: Specific DNA binding and specific gene regulation. Trends Genet. 2014, 30, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Crawford, G.E. DNase-seq: A high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, 2010, pdb–prot5384. [Google Scholar] [CrossRef] [PubMed]
- Buenrostro, J.D.; Wu, B.; Chang, H.Y.; Greenleaf, W.J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 109, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Landt, S.G.; Marinov, G.K.; Kundaje, A.; Kheradpour, P.; Pauli, F.; Batzoglou, S.; Bernstein, B.E.; Bickel, P.; Brown, J.B.; Cayting, P.; et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 2012, 22, 1813–1831. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.; Kern, F.; Schulz, M.H. Integrative prediction of gene expression with chromatin accessibility and conformation data. Epigenetics Chromatin 2020, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Corces, M.R.; Granja, J.M.; Shams, S.; Louie, B.H.; Seoane, J.A.; Zhou, W.; Silva, T.C.; Groeneveld, C.; Wong, C.K.; Cho, S.W.; et al. The chromatin accessibility landscape of primary human cancers. Science 2018, 362, eaav1898. [Google Scholar] [CrossRef] [PubMed]
- Community, T.G. The Galaxy Community. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef] [PubMed]
- Fornes, O.; Castro-Mondragon, J.A.; Khan, A.; Van der Lee, R.; Zhang, X.; Richmond, P.A.; Modi, B.P.; Correard, S.; Gheorghe, M.; Baranašić, D.; et al. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020, 48, D87–D92. [Google Scholar] [CrossRef]
- Molder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.O.; Kanitz, A.; et al. Sustainable data analysis with Snakemake. F1000Research 2021, 10, 33. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Pages, H.; Aboyoun, P.; Gentleman, R.; DebRoy, S.; Pages, M.H.; IRanges, L. Biostrings: Efficient Manipulation of Biological Strings. R Package Version 2.72.1. Available online: https://bioconductor.org/packages/Biostrings. (accessed on 1 July 2024).
- Ameur, A. BCRANK: Predicting Binding Site Consensus from Ranked DNA Sequences. Available online: https://bioconductor.org/packages/release/bioc/manuals/BCRANK/man/BCRANK.pdf (accessed on 1 July 2024).
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Stamatoyannopoulos, J.A.; Bailey, T.L.; Noble, W.S. Quantifying similarity between motifs. Genome Biol. 2007, 8, R24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Thapa, I.; Haas, C.; Bastola, D. Multiplatform biomarker identification using a data-driven approach enables single-sample classification. BMC Bioinform. 2019, 20, 601. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, F.; Bhardwaj, V.; Arrigoni, L.; Lam, K.C.; Grüning, B.A.; Villaveces, J.; Habermann, B.; Akhtar, A.; Manke, T. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 2018, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Delisle, L.; Rabbani, L.; Wolff, J.; Bhardwaj, V.; Backofen, R.; Grüning, B.; Ramírez, F.; Manke, T. pyGenomeTracks: Reproducible plots for multivariate genomic datasets. Bioinformatics 2021, 37, 422. [Google Scholar] [CrossRef]
- Ramírez, F.; Ryan, D.P.; Grüning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.S.; Heyne, S.; Dündar, F.; Manke, T. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016, 44, W160–W165. [Google Scholar] [CrossRef]
- Eisenberg, E.; Levanon, E.Y. Human housekeeping genes, revisited. Trends Genet. 2013, 29, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, A.; Xu, H.; Krishnan, J.; Berger, S.I.; Mazloom, A.R.; Ma’ayan, A. ChEA: Transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 2010, 26, 2438–2444. [Google Scholar] [CrossRef] [PubMed]
- Padovan-Merhar, O.; Nair, G.P.; Biaesch, A.G.; Mayer, A.; Scarfone, S.; Foley, S.W.; Wu, A.R.; Churchman, L.S.; Singh, A.; Raj, A. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 2015, 58, 339–352. [Google Scholar] [CrossRef]
- Cao, Z.; Grima, R. Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells. Proc. Natl. Acad. Sci. USA 2020, 117, 4682–4692. [Google Scholar] [CrossRef]
- Zuin, J.; Dixon, J.R.; van der Reijden, M.I.; Ye, Z.; Kolovos, P.; Brouwer, R.W.; van de Corput, M.P.; van de Werken, H.J.; Knoch, T.A.; van IJcken, W.F.; et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl. Acad. Sci. USA 2014, 111, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Rogan, P.K. Transcription factor binding site clusters identify target genes with similar tissue-wide expression and buffer against mutations. F1000Research 2018, 7, 1933. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Cho, J.W.; Lee, S.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; et al. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Xiao, Z.; Fan, L.; Ruan, G.; Cheng, Y.; Tian, Y.; Chen, M.; Chen, D.; Wei, Y. RFWD3 Participates in the Occurrence and Development of Colorectal Cancer via E2F1 Transcriptional Regulation of BIRC5. Front. Cell Dev. Biol. 2021, 9, 675356. [Google Scholar] [CrossRef] [PubMed]
- Grob, T.; Novak, U.; Maisse, C.; Barcaroli, D.; Lüthi, A.; Pirnia, F.; Hügli, B.; Graber, H.; De Laurenzi, V.; Fey, M.; et al. Human ΔNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 2001, 8, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, P.; Medema, J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Apoptosis 2020, 25, 305–320. [Google Scholar] [CrossRef]
Data Subset | Number of Samples |
---|---|
ATAC-seq BAM files | 41 |
Non-duplicated patient IDs | 38 |
Non-duplicated patient IDs with corresponding mutation data | 31 |
TF | Target Genes | Interaction Type | Target ED | Target Pval Adjust |
---|---|---|---|---|
E2F1 | BIRC5 | Activation | 1.307 | |
CEBPB | CXCL8 | Activation | 1.881 | |
CEBPB | GDF15 | Activation | 2.050 | |
FOXA2 | MMP7 | Activation | 2.056 | |
FOXA2 | ABCA1 | Repression | −1.386 | |
FOXL1 | BMP4 | Activation | 1.381 | |
E2F1 | TP73 | Activation | 0.355 | |
E2F1 | TP53 | Repression | −0.207 | |
MYC | TP73 | Activation | 0.355 | |
MYCN | TP53 | Repression | −0.207 | |
TP73 | BBC3 | Activation | 0.805 | |
TP73 | PMAIP1 | Activation | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecka, C.J.; Thapa, I.; Singh, A.B.; Bastola, D. A Computational Approach to Demonstrate the Control of Gene Expression via Chromosomal Access in Colorectal Cancer. BioMedInformatics 2024, 4, 1822-1834. https://doi.org/10.3390/biomedinformatics4030100
Pecka CJ, Thapa I, Singh AB, Bastola D. A Computational Approach to Demonstrate the Control of Gene Expression via Chromosomal Access in Colorectal Cancer. BioMedInformatics. 2024; 4(3):1822-1834. https://doi.org/10.3390/biomedinformatics4030100
Chicago/Turabian StylePecka, Caleb J., Ishwor Thapa, Amar B. Singh, and Dhundy Bastola. 2024. "A Computational Approach to Demonstrate the Control of Gene Expression via Chromosomal Access in Colorectal Cancer" BioMedInformatics 4, no. 3: 1822-1834. https://doi.org/10.3390/biomedinformatics4030100
APA StylePecka, C. J., Thapa, I., Singh, A. B., & Bastola, D. (2024). A Computational Approach to Demonstrate the Control of Gene Expression via Chromosomal Access in Colorectal Cancer. BioMedInformatics, 4(3), 1822-1834. https://doi.org/10.3390/biomedinformatics4030100