Herbicide Program to Control Parthenium hysterophorus in Grain Sorghum in an Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Site
2.2. Experimental Design
2.3. Crop Management Practices
2.4. Measurements and Observations
2.5. Statistical Analysis
2.6. Economic Analysis
3. Results
3.1. Weed Parameters
3.2. Sorghum Growth and Yield
3.3. Economics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, N.; Tahir, A.; Ain, Q. Current situation and future outlook of sorghum area and production in Pakistan. Asian J. Agric. Rur. Dev. 2013, 3, 283–289. [Google Scholar]
- Hussain, N.; Baloch, M.S.; Yousaf, M.; Naeem, M.; Khakwani, A.A.; Begum, I. Performance of sorghum varieties in Potohar region. Gomal Uni. J. Res. 2011, 27, 26–30. [Google Scholar]
- Ghani, A.; Saeed, M.; Hussain, D.; Arshad, M.; Shafique, M.M.; Shah, S.A.S. Evaluation of different sorghum (Sorghum bicolor L. Moench) varieties for grain yield and related characteristics. Sci. Lett. 2015, 3, 72–74. [Google Scholar]
- Bajwa, A.A.; Chauhan, B.S.; Farooq, M.; Shabbir, A.; Adkins, S.W. What do we really know about alien plant invasion? a review of the invasion mechanism of one of the world’s worst weeds. Planta 2016, 244, 39–57. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Farooq, M.; Nawaz, A.; Yadav, L.; Chauhan, B.S.; Adkins, S. Impact of invasive plant species on the livelihoods of farming households: Evidence from Parthenium hysterophorus invasion in rural Punjab, Pakistan. Biol. Invasions 2019, 21, 3285–3304. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Nguyen, T.; Navie, S.; O’Donnell, C.; Adkins, S. Weed seed spread and its prevention: The role of roadside wash down. J. Environ. Manag. 2018, 208, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Tamado, T.; Milberg, P. Weed flora in arable fields of eastern Ethiopia with emphasis on the occurrence of Parthenium hysterophorus. Weed Res. 2000, 40, 507–521. [Google Scholar] [CrossRef]
- Asif, M.; Ayub, M.; Tanveer, A.; Akhtar, J. Estimating yield losses and economic threshold level of Parthenium hysterophorus in forage sorghum. Planta Danin. 2017, 35, e017164158. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Chauhan, B.S.; Adkins, S. Morphological, physiological and biochemical responses of two Australian biotypes of Parthenium hysterophorus to different soil moisture regimes. Environ. Sci. Pollut. Res. 2017, 24, 16186–16194. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Chauhan, B.S.; Adkins, S.W. Germination ecology of two Australian biotypes of ragweed parthenium (Parthenium hysterophorus) relates to their invasiveness. Weed Sci. 2018, 66, 62–70. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Pandher, J.K.; Kohli, R.K. Assessment of allelopathic properties of Parthenium hysterophorus residues. Agric. Ecosyst. Environ. 2003, 95, 537–541. [Google Scholar] [CrossRef]
- Nguyen, T.; Bajwa, A.A.; Navie, S.; O’Donnell, C.; Adkins, S. Parthenium weed (Parthenium hysterophorus L.) and climate change: The effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. 2017, 24, 10727–10739. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Bajwa, A.A.; Navie, S.; O’Donnell, C.; Adkins, S. The soil seedbank of pasture communities in central Queensland invaded by Parthenium hysterophorus L. Range. Ecol. Manag. 2017, 70, 244–254. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Weston, P.A.; Gurusinghe, S.; Latif, S.; Adkins, S.W.; Weston, L.A. Toxic potential and metabolic profiling of two Australian biotypes of the invasive plant parthenium weed (Parthenium hysterophorus L.). Toxins 2020, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Tamado, T.; Ohlander, L.; Milberg, P. Interference by the weed Parthenium hysterophorus L. with grain sorghum: Influence of weed density and duration of competition. Int. J. Pest Manag. 2002, 48, 183–188. [Google Scholar] [CrossRef]
- Safdar, M.E.; Tanveer, A.; Khaliq, A.; Maqbool, R. Critical competition period of parthenium weed (Parthenium hysterophorus L.) in maize. Crop Prot. 2016, 80, 101–107. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Ullah, A.; Farooq, M.; Chauhan, B.S.; Adkins, S. Effect of different densities of parthenium weed (Parthenium hysterophorus L.) on the performance of direct-seeded rice under aerobic conditions. Arch. Agron. Soil Sci. 2019, 65, 796–808. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Ullah, A.; Farooq, M.; Chauhan, B.S.; Adkins, S. Competition dynamics of Parthenium hysterophorus in direct-seeded aerobic rice fields. Exp. Agric. 2020, 56, 195–203. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Nawaz, A.; Farooq, M.; Chauhan, B.S.; Adkins, S. Parthenium weed (Parthenium hysterophorus) competition with grain sorghum under arid conditions. Exp. Agric. 2020, 56, 387–396. [Google Scholar] [CrossRef]
- Shabbir, A.; Bajwa, A.A.; Dhileepan, K.; Zalucki, M.; Khan, N.; Adkins, S. Integrated use of biological approaches provides effective control of parthenium weed. Arch. Agron. Soil Sci. 2018, 64, 1861–1878. [Google Scholar] [CrossRef]
- Belgeri, A.; Bajwa, A.A.; Shabbir, A.; Navie, S.; Vivian-Smith, G.; Adkins, S. Managing an invasive weed species, Parthenium hysterophorus, with suppressive plant species in Australian grasslands. Plants 2020, 9, 1587. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Yadav, A.; Balyan, R.S.; Malik, R.K.; Singh, M. Control of ragweed parthenium (Parthenium hysterophorus) and associated weeds. Weed Technol. 2004, 18, 658–664. [Google Scholar] [CrossRef]
- Odero, D.C. Response of ragweed parthenium (Parthenium hysterophorus) to saflufenacil and glyphosate. Weed Technol. 2012, 26, 443–448. [Google Scholar] [CrossRef]
- Fernandez, J.V.; Odero, D.C.; MacDonald, G.E.; Ferrell, J. Parthenium hysterophorus L. control in response to pyraflufen-ethyl application. Crop Prot. 2014, 57, 35–37. [Google Scholar] [CrossRef]
- Tamado, T.; Milberg, P. Control of Parthenium (Parthenium hysterophorus) in grain sorghum (Sorghum bicolor) in the smallholder farming system in eastern Ethiopia. Weed Technol. 2004, 18, 100–105. [Google Scholar] [CrossRef]
- Tadesse, B.; Das, T.K.; Yaduraju, N.T. Effects of some integrated management options on parthenium interference in sorghum. Weed Biol. Manag. 2010, 10, 160–169. [Google Scholar] [CrossRef]
- Rehman, A.; Hassan, F.U.; Qamar, R.; Ali, M.; Zamir, M.S.; Iqbal, S.; Masood, N.; Javeed, H.M.R. Efficacy of herbicides in controlling Parthenium hysterophorus L. in spring maize (Zea mays L.). Qual. Ass. Saf. Crops Foods 2017, 9, 213–220. [Google Scholar] [CrossRef]
- Nishanthan, K.; Sivachandiran, S.; Marambe, B. Seedbank dynamics and integrated management of Parthenium hysterophorus in vegetable capsicum. Crop Prot. 2018, 107, 56–63. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Ullah, A.; Farooq, M.; Chauhan, B.S.; Adkins, S. Chemical control of parthenium weed (Parthenium hysterophorus L.) in two contrasting cultivars of rice under direct-seeded conditions. Crop Prot. 2019, 117, 26–36. [Google Scholar] [CrossRef]
- Dantata, I.J.; Shittu, E.A. Effect of pendimethalin on relative tolerance of sorghum in northern Guinea Savanna areas of Nigeria. Asian J. Agric. Food Sci. 2014, 2, 221–226. [Google Scholar]
- Tadesse, B. Studies on Integrated Management of Weeds in Sorghum with Special Emphasis on Parthenium hysterophorus L. Master’s Thesis, Indian Agricultural Research Institute, New Delhi, India, 2001. [Google Scholar]
- Rosales-Robles, E.; Sanchez-de-la-Cruz, R.; Salinas-Garcia, J.; Pecina-Quintero, V. Broadleaf weed management in grain sorghum with reduced rates of postemergence herbicides. Weed Technol. 2005, 19, 385–390. [Google Scholar] [CrossRef]
- Fromme, D.D.; Dotray, P.A.; Grichar, W.J.; Fernandez, C.J. Weed control and grain sorghum (Sorghum bicolor) tolerance to pyrasulfotole plus bromoxynil. Int. J. Agron. 2012, 2012, 951454. [Google Scholar] [CrossRef]
- Reddy, S.S.; Stahlman, P.W.; Geier, P.W.; Thompson, C.R.; Currie, R.S.; Schlegel, A.J.; Olson, B.L.; Lally, N.G. Weed control and crop safety with premixed pyrasulfotole and bromoxynil in grain sorghum. Weed Technol. 2013, 27, 664–670. [Google Scholar] [CrossRef]
- CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo). From Agronomic Data to Farmers Recommendations: An Economics Training Manual; CIMMYT: Mexico City, Mexico, 1988; pp. 31–33. [Google Scholar]
- Farooq, M.; Nawaz, A. Weed dynamics and productivity of wheat in conventional and conservation rice-based cropping systems. Soil Till. Res. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Belz, R.G.; Reinhardt, C.F.; Foxcroft, L.C.; Hurle, K. Residue allelopathy in Parthenium hysterophorus L.-does parthenin play a leading role? Crop Prot. 2007, 26, 237–245. [Google Scholar] [CrossRef]
- Jursik, M.; Soukup, J.; Holec, J.; Andr, J.; Hamouzová, K. Efficacy and selectivity of pre-emergent sunflower herbicides under different soil moisture conditions. Plant Prot. Sci. 2015, 51, 214–222. [Google Scholar] [CrossRef]
- Singh, G.; Muker, H.S.; Singh, G.; Singh, A.; Singh, A. Effect of chemical weed management on growth and yield attributes of kharif sorghum (Sorghum bicolor L.). Int. J. Curr. Micro. App. Sci. 2018, 7, 2072–2077. [Google Scholar] [CrossRef]
- Currie, R.; Geier, P. Weed control and crop injury with single or sequential herbicide applications in grain sorghum. Kans. Agric. Exp. Stn. Res. Rep. 2016, 2, 26. [Google Scholar] [CrossRef]
Treatments | Dose (kg a.i. ha−1) | Time of Application (Days after Sowing) |
---|---|---|
Weed-free | Kept weed-free throughout the crop season | |
Pendimethalin | 1.65 | 3 |
Bromoxynil | 0.30 | 22 |
Pendimethalin followed by Bromoxynil | 1.65 followed by 0.30 | 3 followed by 22 |
Weedy | Weeds were not controlled throughout the crop season |
Weed Control Treatment | Parthenium Weed Density (m−2) * | Parthenium Weed Dry Biomass (g m−2) |
---|---|---|
Pendimethalin | 3.9 (15.2) b | 28.3 b |
Bromoxynil | 3.4 (10.8) c | 22.7 b |
Pendimethalin fb bromoxynil | 2.3 (5.0) d | 9.0 c |
Weedy | 4.8 (23.2) a | 62.8 a |
LSD (p < 0.05) | 0.49 | 5.97 |
Weed Control Treatment | Leaf Fresh Weight Per Plant (g) | Plant Dry Biomass (g) | Plant Height (cm) | Number of Heads (m−2) | ||||
---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Weed-free | 9.3 a | 9.0 a | 24.2 a | 21.2 a | 154.5 a | 150.1 a | 85.3 a | 82.0 a |
Pendimethalin | 6.0 c | 6.0 b | 18.8 d | 15.7 d | 139.7 c | 132.2 d | 66.7 cd | 62.0 d |
Bromoxynil | 6.3 c | 6.0 b | 20.1 c | 17.3 c | 143.6 bc | 136.2 c | 70.7 c | 66.0 c |
Pendimethalin fb bromoxynil | 7.7 b | 7.7 a | 22.1 b | 19.1 b | 145.7 b | 138.0 b | 77.3 b | 72.0 b |
Weedy | 5.3 c | 5.7 b | 18.3 e | 15.4 e | 134.9 d | 128.3 e | 64.0 d | 58.3 e |
LSD (p < 0.05) | 1.14 | 1.57 | 0.44 | 0.25 | 4.50 | 0.48 | 4.51 | 2.89 |
Weed Control Treatment | Fresh Forage Yield (t ha−1) | Dry Fodder Yield (t ha−1) | 1000-Grain Weight (g) | Grain Yield (t ha−1) | ||||
---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | |
Weed-free | 23.1 a | 21.2 a | 15.4 a | 15.0 a | 23.0 a | 21.0 a | 1.15 a | 1.14 a |
Pendimethalin | 18.1 d | 16.1 d | 8.9 c | 7.5 c | 20.0 d | 17.8 d | 0.82 c | 0.80 d |
Bromoxynil | 18.9 c | 17.0 c | 9.5 bc | 8.2 bc | 20.8 c | 18.7 c | 0.88 c | 0.85 c |
Pendimethalin fb bromoxynil | 21.1 b | 19.2 b | 11.6 b | 10.3 b | 21.8 b | 19.8 b | 0.96 b | 0.95 b |
Weedy | 17.6 d | 15.6 e | 8.3 c | 7.0 c | 19.5 e | 17.4 e | 0.77 d | 0.73 e |
LSD (p < 0.05) | 0.49 | 0.45 | 1.08 | 0.91 | 0.32 | 0.23 | 0.05 | 0.04 |
Weed Control Treatments | Gross Income (USD) | Fixed Cost (USD ha−1) | Variable Cost (USD ha−1) | Total Cost (USD ha−1) | Net Benefit (USD ha−1) | Benefit Cost Ratio |
---|---|---|---|---|---|---|
2016 | ||||||
Weed-free | 727 | 361 | 55 | 416 | 310 | 1.75 |
Pendimethalin | 508 | 361 | 17 | 378 | 129 | 1.34 |
Bromoxynil | 545 | 361 | 12 | 374 | 171 | 1.46 |
Pendimethalin fb bromoxynil | 600 | 361 | 29 | 391 | 210 | 1.54 |
Weedy | 476 | 361 | 0 | 361 | 115 | 1.32 |
2017 | ||||||
Weed-free | 719 | 361 | 55 | 416 | 303 | 1.73 |
Pendimethalin | 489 | 361 | 17 | 378 | 111 | 1.29 |
Bromoxynil | 521 | 361 | 12 | 374 | 147 | 1.39 |
Pendimethalin fb bromoxynil | 588 | 361 | 29 | 391 | 197 | 1.51 |
Weedy | 447 | 361 | 0 | 361 | 86 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajwa, A.A.; Nawaz, A.; Farooq, M.; Chauhan, B.S.; Adkins, S. Herbicide Program to Control Parthenium hysterophorus in Grain Sorghum in an Arid Environment. Crops 2023, 3, 292-301. https://doi.org/10.3390/crops3040026
Bajwa AA, Nawaz A, Farooq M, Chauhan BS, Adkins S. Herbicide Program to Control Parthenium hysterophorus in Grain Sorghum in an Arid Environment. Crops. 2023; 3(4):292-301. https://doi.org/10.3390/crops3040026
Chicago/Turabian StyleBajwa, Ali Ahsan, Ahmad Nawaz, Muhammad Farooq, Bhagirath Singh Chauhan, and Steve Adkins. 2023. "Herbicide Program to Control Parthenium hysterophorus in Grain Sorghum in an Arid Environment" Crops 3, no. 4: 292-301. https://doi.org/10.3390/crops3040026
APA StyleBajwa, A. A., Nawaz, A., Farooq, M., Chauhan, B. S., & Adkins, S. (2023). Herbicide Program to Control Parthenium hysterophorus in Grain Sorghum in an Arid Environment. Crops, 3(4), 292-301. https://doi.org/10.3390/crops3040026