Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View
Abstract
:1. Introduction
2. Materials and Methods
3. Environmental Risk Factors of AOM and URT Microbiota
3.1. Breastfeeding
3.2. Delivery Route
3.3. Smoking
3.4. Daycare Attendance
3.5. Season
3.6. Presence of Siblings
3.7. Air Pollution
3.8. Impact of Pneumococcal Vaccination
4. Discussion
5. Limitations
6. Conclusions
- Deepening our knowledge on the impact of both risk and protective factors, such as vaccinations
- Exploring the cause-effective correlation between environmental agents and subsequent microbial modifications
- Focusing on Corynebacterium and Dolosigranulum role in the URT, in order to define their possible use as probiotics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paradise, J.L.; Rockette, H.E.; Colborn, D.K.; Bernard, B.S.; Smith, C.G.; Kurs-Lasky, M.; Janosky, J.E. Otitis Media in 2253 Pittsburgh-Area Infants: Prevalence and Risk Factors during the First Two Years of Life. Pediatrics 1997, 99, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Marom, T.; Marchisio, P.G.; Tamir, S.O.; Torretta, S.; Gavriel, H.; Esposito, S. Complementary and Alternative Medicine Treatment Options for Otitis Media. Medicine 2016, 95, e2695. [Google Scholar] [CrossRef] [PubMed]
- Lieberthal, A.S.; Carroll, A.E.; Chonmaitree, T.; Ganiats, T.G.; Hoberman, A.; Jackson, M.A.; Joffe, M.D.; Miller, D.T.; Rosenfeld, R.M.; Sevilla, X.D.; et al. The Diagnosis and Management of Acute Otitis Media. Pediatrics 2013, 131, e964–e999. [Google Scholar] [CrossRef] [PubMed]
- Marchisio, P.G.; Cantarutti, L.; Sturkenboom, M.; Girotto, S.; Picelli, G.; Donà, D.; Scamarcia, A.; Villa, M.; Giaquinto, C. Burden of acute otitis media in primary care pediatrics in Italy: A secondary data analysis from the Pedianet database. BMC Pediatr. 2012, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Marchisio, P.G.; Nazzari, E.; Torretta, S.; Esposito, S.; Principi, N. Medical prevention of recurrent acute otitis media: An updated overview. Expert Rev. Anti-Infect. Ther. 2014, 12, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Ngo, C.C.; Massa, H.M.; Thornton, R.B.; Cripps, A.W. Predominant Bacteria Detected from the Middle Ear Fluid of Children Experiencing Otitis Media: A Systematic Review. PLoS ONE 2016, 11, e0150949. [Google Scholar] [CrossRef]
- Heikkinen, T.; Chonmaitree, T. Importance of Respiratory Viruses in Acute Otitis Media. Clin. Microbiol. Rev. 2003, 16, 230–241. [Google Scholar] [CrossRef]
- Chonmaitree, T. Acute Otitis Media Is Not a Pure Bacterial Disease. Clin. Infect. Dis. 2006, 43, 1423–1425. [Google Scholar] [CrossRef]
- Bakaletz, L.O. Immunopathogenesis of polymicrobial otitis media. J. Leukoc. Biol. 2009, 87, 213–222. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef]
- Bernstein, J.M.; Reddy, M.S.; Scannapieco, F.A.; Faden, H.S.; Ballow, M. The Microbial Ecology and Immunology of the Adenoid: Implications for Otitis Media. Ann. N. Y. Acad. Sci. 1997, 830, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Nistico, L.; Kreft, R.; Gieseke, A.; Coticchia, J.M.; Burrows, A.; Khampang, P.; Liu, Y.; Kerschner, J.E.; Post, J.C.; Lonergan, S.; et al. Adenoid Reservoir for Pathogenic Biofilm Bacteria. J. Clin. Microbiol. 2011, 49, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Hoa, M.; Tomovic, S.; Nistico, L.; Hall-Stoodley, L.; Stoodley, P.; Sachdeva, L.; Berk, R.; Coticchia, J.M. Identification of adenoid biofilms with middle ear pathogens in otitis-prone children utilizing SEM and FISH. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, D.; de Groot, R.; Hermans, P.W.M. Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect. Dis. 2004, 4, 144–154. [Google Scholar] [CrossRef]
- Piters, W.D.S.; Sanders, E.A.M.; Bogaert, D. The role of the local microbial ecosystem in respiratory health and disease. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140294. [Google Scholar] [CrossRef]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH Human Microbiome Project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [CrossRef]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef]
- Honda, K.; Littman, D.R. The Microbiome in Infectious Disease and Inflammation. Annu. Rev. Immunol. 2012, 30, 759–795. [Google Scholar] [CrossRef]
- Man, W.H.; De Steenhuijsen Piters, W.A.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Pettigrew, M.M.; Laufer, A.S.; Gent, J.F.; Kong, Y.; Fennie, K.P.; Metlay, J.P. Upper Respiratory Tract Microbial Communities, Acute Otitis Media Pathogens, and Antibiotic Use in Healthy and Sick Children. Appl. Environ. Microbiol. 2012, 78, 6262–6270. [Google Scholar] [CrossRef]
- Laufer, A.S.; Metlay, J.P.; Gent, J.F.; Fennie, K.; Kong, Y.; Pettigrew, M.M. Microbial Communities of the Upper Respiratory Tract and Otitis Media in Children. mBio 2011, 2, e00245-10. [Google Scholar] [CrossRef] [PubMed]
- Bomar, L.; Brugger, S.D.; Yost, B.H.; Davies, S.S.; Lemon, K.P. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio 2016, 7, e01725-15. [Google Scholar] [CrossRef] [PubMed]
- Lappan, R.; Imbrogno, K.; Sikazwe, C.; Anderson, D.; Mok, D.; Coates, H.; Vijayasekaran, S.; Bumbak, P.; Blyth, C.C.; Jamieson, S.E.; et al. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol. 2018, 18, 13. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Izard, J.; Walsh, E.; Batich, K.; Chongsathidkiet, P.; Clarke, G.; Sela, D.A.; Muller, A.J.; Mullin, J.M.; Albert, K.; et al. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Res. 2017, 77, 1783–1812. [Google Scholar] [CrossRef] [PubMed]
- Charbonneau, M.R.; Blanton, L.V.; DiGiulio, D.B.; Relman, D.A.; Lebrilla, C.B.; Mills, D.A.; Gordon, J.I. A microbial perspective of human developmental biology. Nature 2016, 535, 48–55. [Google Scholar] [CrossRef]
- Schilder, A.G.M.; Chonmaitree, T.; Cripps, A.W.; Rosenfeld, R.M.; Casselbrant, M.L.; Haggard, M.P.; Venekamp, R.P. Otitis media. Nat. Rev. Dis. Primers 2016, 2, 16063. [Google Scholar] [CrossRef]
- Park, M.; Han, J.; Jang, M.-J.; Suh, M.-W.; Lee, J.H.; Oh, S.H.; Park, M.K. Air pollution influences the incidence of otitis media in children: A national population-based study. PLoS ONE 2018, 13, e0199296. [Google Scholar] [CrossRef]
- Kong, K.; Coates, H.L.C. Natural history, definitions, risk factors and burden of otitis media. Med. J. Aust. 2009, 191, S39–S43. [Google Scholar] [CrossRef]
- Kørvel-Hanquist, A.; Koch, A.; Lous, J.; Olsen, S.F.; Homøe, P. Risk of childhood otitis media with focus on potentially modifiable factors: A Danish follow-up cohort study. Int. J. Pediatr. Otorhinolaryngol. 2017, 106, 1–9. [Google Scholar] [CrossRef]
- Marchisio, P.; Bortone, B.; Ciarcià, M.; Motisi, M.A.; Torretta, S.; Gattinara, G.C.; Picca, M.; Di Mauro, G.; Bonino, M.; Mansi, N.; et al. Updated Guidelines for the Management of Acute Otitis Media in Children by the Italian Society of Pediatrics: Prevention. Pediatr. Infect. Dis. J. 2019, 38, S22–S36. [Google Scholar] [CrossRef]
- Vergison, A.; Dagan, R.; Arguedas, A.; Bonhoeffer, J.; Cohen, R.; Dhooge, I.; Hoberman, A.; Liese, J.; Marchisio, P.G.; Palmu, A.A.; et al. Otitis media and its consequences: Beyond the earache. Lancet Infect. Dis. 2010, 10, 195–203. [Google Scholar] [CrossRef]
- Tarrant, M.; Kwok, M.-K.; Lam, T.-H.; Leung, G.M.; Schooling, C.M. Breast-feeding and Childhood Hospitalizations for Infections. Epidemiology 2010, 21, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Duijts, L.; Jaddoe, V.W.V.; Hofman, A.; Moll, H.A. Prolonged and Exclusive Breastfeeding Reduces the Risk of Infectious Diseases in Infancy. Pediatrics 2010, 126, e18–e25. [Google Scholar] [CrossRef] [PubMed]
- Teele, D.W.; Klein, J.O.; Rosner, B. Greater Boston Otitis Media Study Group Epidemiology of Otitis Media During the First Seven Years of Life in Children in Greater Boston: A Prospective, Cohort Study. J. Infect. Dis. 1989, 160, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Duncan, B.; Ey, J.; Holberg, C.J.; Wright, A.L.; Martinez, F.D.; Taussig, L.M. Exclusive Breast-Feeding for at Least 4 Months Protects Against Otitis Media. Pediatrics 1993, 91, 867–872. [Google Scholar] [CrossRef]
- Saarinen, U.M. Prolonged breast feeding as prophylaxis for recurrent otitis media. Acta Paediatr. 1982, 71, 567–571. [Google Scholar] [CrossRef]
- Bowatte, G.; Tham, R.; Allen, K.J.; Tan, D.J.; Lau, M.; Dai, X.; Lodge, C.J. Breastfeeding and childhood acute otitis media: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 85–95. [Google Scholar] [CrossRef]
- Labbok, M.H.; Clark, D.; Goldman, A.S. Breastfeeding: Maintaining an irreplaceable immunological resource. Nat. Rev. Immunol. 2004, 4, 565–572. [Google Scholar] [CrossRef]
- Biesbroek, G.; Bosch, A.A.T.M.; Wang, X.; Keijser, B.J.F.; Veenhoven, R.H.; Sanders, E.A.M.; Bogaert, D. The Impact of Breastfeeding on Nasopharyngeal Microbial Communities in Infants. Am. J. Respir. Crit. Care Med. 2014, 190, 298–308. [Google Scholar] [CrossRef]
- Biesbroek, G.; Tsivtsivadze, E.; Sanders, E.A.M.; Montijn, R.; Veenhoven, R.H.; Keijser, B.J.F.; Bogaert, D. Early Respiratory Microbiota Composition Determines Bacterial Succession Patterns and Respiratory Health in Children. Am. J. Respir. Crit. Care Med. 2014, 190, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.A.T.M.; De Steenhuijsen Piters, W.A.A.; Van Houten, M.A.; Chu, M.L.J.N.; Biesbroek, G.; Kool, J.; Pernet, P.; De Groot, P.K.C.M.; Eijkemans, M.J.C.; Keijser, B.J.F.; et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. Am. J. Respir. Crit. Care Med. 2017, 196, 1582–1590. [Google Scholar] [CrossRef]
- Camelo-Castillo, A.; Henares, D.; Brotons, P.; Galiana, A.; Rodríguez, J.C.; Mira, A.; Muñoz-Almagro, C. on behalf of the Catalan Study Group of Host- Pathogen Interaction in Patients With IPD. Nasopharyngeal Microbiota in Children with Invasive Pneumococcal Disease: Identification of Bacteria with Potential Disease-Promoting and Protective Effects. Front. Microbiol. 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.S.; Plunkett, C.; Yu, Y.; Aquino, J.N.; Patel, S.M.; Hurst, J.H.; Young, R.R.; Smieja, M.; Steenhoff, A.P.; Arscott-Mills, T.; et al. Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy. ISME J. 2021, 16, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Henares, D.; Brotons, P.; de Sevilla, M.F.; Fernandez-Lopez, A.; Hernandez-Bou, S.; Perez-Argüello, A.; Mira, A.; Muñoz-Almagro, C.; Cabrera-Rubio, R. Differential nasopharyngeal microbiota composition in children according to respiratory health status. Microb. Genom. 2021, 7, 000661. [Google Scholar] [CrossRef]
- Newburg, D.S. Human Milk Glycoconjugates That Inhibit Pathogens. Curr. Med. Chem. 1999, 6, 117–127. [Google Scholar] [CrossRef]
- Doherty, A.M.; Lodge, C.J.; Dharmage, S.C.; Dai, X.; Bode, L.; Lowe, A.J. Human Milk Oligosaccharides and Associations with Immune-Mediated Disease and Infection in Childhood: A Systematic Review. Front. Pediatr. 2018, 6, 91. [Google Scholar] [CrossRef]
- Binia, A.; Siegwald, L.; Sultana, S.; Shevlyakova, M.; Lefebvre, G.; Foata, F.; Combremont, S.; Charpagne, A.; Vidal, K.; Sprenger, N.; et al. The Influence of FUT2 and FUT3 Polymorphisms and Nasopharyngeal Microbiome on Respiratory Infections in Breastfed Bangladeshi Infants from the Microbiota and Health Study. mSphere 2021, 6, e00686-21. [Google Scholar] [CrossRef]
- Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schütte, U.M.E.; Beck, D.L.; Abdo, Z.; Fox, L.K.; Williams, J.E.; McGuire, M.K.; McGuire, M.A. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS ONE 2011, 6, e21313. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Breast milk microbiota: A review of the factors that influence composition. J. Infect. 2020, 81, 17–47. [Google Scholar] [CrossRef]
- Fernández, L.; Pannaraj, P.S.; Rautava, S.; Rodríguez, J.M. The Microbiota of the Human Mammary Ecosystem. Front. Cell. Infect. Microbiol. 2020, 10, 586667. [Google Scholar] [CrossRef]
- Drago, L.; Toscano, M.; De Grandi, R.; Grossi, E.; Padovani, E.M.; Peroni, D.G. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J. 2016, 11, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Brugger, S.D.; Eslami, S.M.; Pettigrew, M.M.; Escapa, I.F.; Henke, M.T.; Kong, Y.; Lemon, K.P. Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota. mSphere 2020, 5, e00852-20. [Google Scholar] [CrossRef] [PubMed]
- Guibas, G.V.; Moschonis, G.; Xepapadaki, P.; Roumpedaki, E.; Androutsos, O.; Manios, Y.; Papadopoulos, N.G. Conception via in vitro fertilization and delivery by Caesarean section are associated with paediatric asthma incidence. Clin. Exp. Allergy 2013, 43, 1058–1066. [Google Scholar] [CrossRef]
- Kristensen, K.; Fisker, N.; Haerskjold, A.; Ravn, H.; Simões, E.A.F.; Stensballe, L. Caesarean Section and Hospitalization for Respiratory Syncytial Virus Infection. Pediatr. Infect. Dis. J. 2015, 34, 145–148. [Google Scholar] [CrossRef]
- Hartley, M.; Woolcott, C.G.; Langley, J.M.; Brown, M.M.; Ashley-Martin, J.; Kuhle, S. Birth by Caesarean section and otitis media in childhood: A retrospective cohort study. Sci. Rep. 2020, 10, 5219. [Google Scholar] [CrossRef]
- Jakobsson, H.E.; Abrahamsson, T.R.; Jenmalm, M.C.; Harris, K.; Quince, C.; Jernberg, C.; Björkstén, B.; Engstrand, L.; Andersson, A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut 2013, 63, 559–566. [Google Scholar] [CrossRef]
- Bosch, A.A.; Levin, E.; van Houten, M.A.; Hasrat, R.; Kalkman, G.; Biesbroek, G.; Piters, W.A.D.S.; de Groot, P.-K.C.; Pernet, P.; Keijser, B.J.; et al. Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery. eBioMedicine 2016, 9, 336–345. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef]
- Smith, S.B.; Ravel, J. The vaginal microbiota, host defence and reproductive physiology. J. Physiol. 2016, 595, 451–463. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, I.; Wittouck, S.; Martens, K.; Spacova, I.; Cauwenberghs, E.; Allonsius, C.N.; Jörissen, J.; Wuyts, S.; Van Beeck, W.; Dillen, J.; et al. The nasal mutualist Dolosigranulum pigrum AMBR11 supports homeostasis via multiple mechanisms. iScience 2021, 24, 102978. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.M.; Ma, J.; Prince, A.L.; Antony, K.M.; Seferovic, M.D.; Aagaard, D.M.; Kjersti, M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 2017, 23, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Etzel, R.A.; Pattishall, E.N.; Haley, N.J.; Fletcher, R.H.; Henderson, F.W. Passive Smoking and Middle Ear Effusion among Children in Day Care. Pediatrics 1992, 90, 228–232. [Google Scholar] [CrossRef]
- Greenberg, D.; Givon-Lavi, N.; Broides, A.; Blancovich, I.; Peled, N.; Dagan, R. The Contribution of Smoking and Exposure to Tobacco Smoke to Streptococcus pneumoniae and Haemophilus influenzae Carriage in Children and Their Mothers. Clin. Infect. Dis. 2006, 42, 897–903. [Google Scholar] [CrossRef]
- Charlson, E.S.; Chen, J.; Custers-Allen, R.; Bittinger, K.; Li, H.; Sinha, R.; Hwang, J.; Bushman, F.D.; Collman, R.G. Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette Smokers. PLoS ONE 2010, 5, e15216. [Google Scholar] [CrossRef]
- Elwany, S.; Ibrahim, A.A.; Mandour, Z.; Talaat, I. Effect of passive smoking on the ultrastructure of the nasal mucosa in children. Laryngoscope 2012, 122, 965–969. [Google Scholar] [CrossRef]
- Elwany, S.; Gamea, M.A.; Talaat, I. Passive smoking induces nasal biofilms in children. Int. J. Pediatr. Otorhinolaryngol. 2021, 146, 110755. [Google Scholar] [CrossRef]
- Ladomenou, F.; Kafatos, A.; Tselentis, Y.; Galanakis, E. Predisposing factors for acute otitis media in infancy. J. Infect. 2010, 61, 49–53. [Google Scholar] [CrossRef]
- La De Hoog, M.; Venekamp, R.P.; Van Der Ent, C.K.; Schilder, A.; Sanders, E.A.; Damoiseaux, R.A.; Bogaert, D.; Uiterwaal, C.S.; Smit, H.A.; Bruijning-Verhagen, P. Impact of early daycare on healthcare resource use related to upper respiratory tract infections during childhood: Prospective WHISTLER cohort study. BMC Med. 2014, 12, 107. [Google Scholar] [CrossRef]
- Ginkel, A.C.P.-V.; Bruijning-Verhagen, P.; Uiterwaal, C.S.P.M.; van der Ent, C.K.; Smit, H.A.; de Hoog, M.L.A. Acute Otitis Media During Infancy. Pediatr. Infect. Dis. J. 2017, 36, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Earl, J.; Bajorski, P.; Gonzalez, E.; Pichichero, M.E. Nasopharyngeal microbiome analyses in otitis-prone and otitis-free children. Int. J. Pediatr. Otorhinolaryngol. 2021, 143, 110629. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Salazar, C.; Shilts, M.H.; Tovchigrechko, A.; Schobel, S.; Chappell, J.D.; Larkin, E.K.; Shankar, J.; Yooseph, S.; Nelson, K.E.; Halpin, R.A.; et al. Differences in the Nasopharyngeal Microbiome During Acute Respiratory Tract Infection with Human Rhinovirus and Respiratory Syncytial Virus in Infancy. J. Infect. Dis. 2016, 214, 1924–1928. [Google Scholar] [CrossRef] [PubMed]
- Toivonen, L.; Camargo, C.A.; Gern, J.E.; Bochkov, Y.A.; Mansbach, J.M.; Piedra, P.A.; Hasegawa, K. Association between rhinovirus species and nasopharyngeal microbiota in infants with severe bronchiolitis. J. Allergy Clin. Immunol. 2019, 143, 1925–1928.e7. [Google Scholar] [CrossRef]
- Wen, Z.; Xie, G.; Zhou, Q.; Qiu, C.; Li, J.; Hu, Q.; Dai, W.; Li, D.; Zheng, Y.; Wen, F. Distinct Nasopharyngeal and Oropharyngeal Microbiota of Children with Influenza A Virus Compared with Healthy Children. BioMed Res. Int. 2018, 2018, 6362716. [Google Scholar] [CrossRef]
- Chonmaitree, T.; Jennings, K.; Golovko, G.; Khanipov, K.; Pimenova, M.; Patel, J.A.; McCormick, D.P.; Loeffelholz, M.J.; Fofanov, Y. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS ONE 2017, 12, e0180630. [Google Scholar] [CrossRef]
- DeMuri, G.P.; Gern, J.E.; Eickhoff, J.C.; Lynch, S.V.; Wald, E.R. Dynamics of Bacterial Colonization with Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis during Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. Clin. Infect. Dis. 2017, 66, 1045–1053. [Google Scholar] [CrossRef]
- Mandel, E.M.; Doyle, W.J.; Winther, B.; Alper, C.M. The incidence, prevalence and burden of OM in unselected children aged 1–8 years followed by weekly otoscopy through the “common cold” season. Int. J. Pediatr. Otorhinolaryngol. 2008, 72, 491–499. [Google Scholar] [CrossRef]
- Santee, C.A.; Nagalingam, N.A.; Faruqi, A.A.; DeMuri, G.P.; Gern, J.E.; Wald, E.R.; Lynch, S.V. Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis. Microbiome 2016, 4, 34. [Google Scholar] [CrossRef]
- Bogaert, D.; Keijser, B.; Huse, S.; Rossen, J.; Veenhoven, R.; Van Gils, E.; Bruin, J.; Montijn, R.; Bonten, M.; Sanders, E. Variability and Diversity of Nasopharyngeal Microbiota in Children: A Metagenomic Analysis. PLoS ONE 2011, 6, e17035. [Google Scholar] [CrossRef]
- Mika, M.; Mack, I.; Korten, I.; Qi, W.; Aebi, S.; Frey, U.; Latzin, P.; Hilty, M. Dynamics of the nasal microbiota in infancy: A prospective cohort study. J. Allergy Clin. Immunol. 2015, 135, 905–912.e11. [Google Scholar] [CrossRef] [PubMed]
- Schoos, A.-M.M.; Kragh, M.; Ahrens, P.; Kuhn, K.G.; Rasmussen, M.A.; Chawes, B.L.; Jensen, J.S.; Brix, S.; Bisgaard, H.; Stokholm, J. Season of Birth Impacts the Neonatal Nasopharyngeal Microbiota. Children 2020, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Paynter, S.; Ware, R.; Sly, P.; Williams, G.; Weinstein, P. Seasonal immune modulation in humans: Observed patterns and potential environmental drivers. J. Infect. 2015, 70, 1–10. [Google Scholar] [CrossRef]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef]
- Toivonen, L.; Hasegawa, K.; Ajami, N.J.; Celedón, J.C.; Mansbach, J.M.; Petrosino, J.F.; Camargo, C.A., Jr. Circulating 25-hydroxyvitamin D, nasopharyngeal microbiota, and bronchiolitis severity. Pediatr. Allergy Immunol. 2018, 29, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Labout, J.A.M.; Duijts, L.; Lebon, A.; De Groot, R.; Hofman, A.; Jaddoe, V.V.W.; Verbrugh, H.A.; Hermans, P.W.M.; Moll, H.A. Risk factors for otitis media in children with special emphasis on the role of colonization with bacterial airway pathogens: The Generation R study. Eur. J. Epidemiol. 2010, 26, 61–66. [Google Scholar] [CrossRef]
- Neto, J.F.L.; Hemb, L.; e Silva, D.B. Systematic literature review of modifiable risk factors for recurrent acute otitis media in childhood. J. Pediatr. 2006, 82, 87–96. [Google Scholar] [CrossRef]
- Shimada, J.; Yamanaka, N.; Hotomi, M.; Suzumoto, M.; Sakai, A.; Ubukata, K.; Mitsuda, T.; Yokota, S.; Faden, H. Household Transmission of Streptococcus pneumoniae among Siblings with Acute Otitis Media. J. Clin. Microbiol. 2002, 40, 1851–1853. [Google Scholar] [CrossRef]
- Hasegawa, K.; Linnemann, R.W.; Mansbach, J.M.; Ajami, N.J.; Espinola, J.A.; Fiechtner, L.G.; Petrosino, J.F.; Camargo, C.A, Jr. Household siblings and nasal and fecal microbiota in infants. Pediatr. Int. 2016, 59, 473–481. [Google Scholar] [CrossRef]
- Ta, L.D.H.; Yap, G.C.; Tay, C.J.X.; Lim, A.S.M.; Huang, C.-H.; Chu, C.W.; De Sessions, P.F.; Shek, L.P.; Goh, A.; Van Bever, H.P.; et al. Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing. J. Allergy Clin. Immunol. 2018, 142, 86–95. [Google Scholar] [CrossRef]
- Song, J.-J.; Lee, J.D.; Lee, B.D.; Chae, S.W.; Park, M.K. Effect of diesel exhaust particles on human middle ear epithelial cells. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Park, M.K.; Chae, S.W.; Kim, H.-B.; Cho, J.G.; Song, J.-J. Middle ear inflammation of rat induced by urban particles. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 2193–2197. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Jang, M.-J.; Oh, S.H.; Lee, J.H.; Suh, M.-W.; Park, M.K. Associations between Particulate Matter and Otitis Media in Children: A Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 4604. [Google Scholar] [CrossRef] [PubMed]
- Bowatte, G.; Tham, R.; Perret, J.L.; Bloom, M.S.; Dong, G.; Waidyatillake, N.; Bui, D.; Morgan, G.G.; Jalaludin, B.; Lodge, C.J.; et al. Air Pollution and Otitis Media in Children: A Systematic Review of Literature. Int. J. Environ. Res. Public Health 2018, 15, 257. [Google Scholar] [CrossRef]
- Gisler, A.; Korten, I.; de Hoogh, K.; Vienneau, D.; Frey, U.; Decrue, F.; Gorlanova, O.; Soti, A.; Hilty, M.; Latzin, P.; et al. Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. Environ. Res. 2021, 202, 111633. [Google Scholar] [CrossRef]
- Xue, Y.; Chu, J.; Li, Y.; Kong, X. The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicol. Lett. 2020, 334, 14–20. [Google Scholar] [CrossRef]
- Pettigrew, M.M.; Alderson, M.R.; Bakaletz, L.O.; Barenkamp, S.J.; Hakansson, A.P.; Mason, K.M.; Nokso-Koivisto, J.; Patel, J.; Pelton, S.I.; Murphy, T.F. Panel 6: Vaccines. Otolaryngol. Neck Surg. 2017, 156 (Suppl. 4), S76–S87. [Google Scholar] [CrossRef]
- Johansson Kostenniemi, U.; Palm, J.; Silfverdal, S.-A. Reductions in otitis and other respiratory tract infections following childhood pneumococcal vaccination. Acta Paediatr. 2018, 107, 1601–1609. [Google Scholar] [CrossRef]
- Magnus, M.C.; Vestrheim, D.F.; Nystad, W.; Håberg, S.E.; Stigum, H.; London, S.J.; Bergsaker, M.A.R.; Caugant, D.A.; Aaberge, I.S.; Nafstad, P. Decline in Early Childhood Respiratory Tract Infections in the Norwegian Mother and Child Cohort Study After Introduction of Pneumococcal Conjugate Vaccination. Pediatr. Infect. Dis. J. 2012, 31, 951–955. [Google Scholar] [CrossRef]
- Stamboulidis, K.; Chatzaki, D.; Poulakou, G.; Ioannidou, S.; Lebessi, E.; Katsarolis, I.; Sypsa, V.; Tsakanikos, M.; Kafetzis, D.; Tsolia, M.N. The Impact of the Heptavalent Pneumococcal Conjugate Vaccine on the Epidemiology of Acute Otitis Media Complicated by Otorrhea. Pediatr. Infect. Dis. J. 2011, 30, 551–555. [Google Scholar] [CrossRef]
- Sugino, H.; Tsumura, S.; Kunimoto, M.; Noda, M.; Chikuie, D.; Noda, C.; Yamashita, M.; Watanabe, H.; Ishii, H.; Tashiro, T.; et al. Influence of Pneumococcal Conjugate Vaccine on Acute Otitis Media with Severe Middle Ear Inflammation: A Retrospective Multicenter Study. PLoS ONE 2015, 10, e0137546. [Google Scholar] [CrossRef] [PubMed]
- Suarez, V.; Michel, F.; Toscano, C.M.; Bierrenbach, A.L.; Gonzales, M.; Alencar, A.P.; Matus, C.R.; Andrus, J.K.; de Oliveira, L.H. Impact of pneumococcal conjugate vaccine in children morbidity and mortality in Peru: Time series analyses. Vaccine 2016, 34, 4738–4743. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Gondar, O.; Figuerola-Massana, E.; Vila-Corcoles, A.; Aguirre, C.A.; de Diego, C.; Satue, E.; Gomez, F.; Raga, X.; EPIVAC Study Group. Epidemiology of Streptococcus pneumoniae causing acute otitis media among children in Southern Catalonia throughout 2007–2013: Incidence, serotype distribution and vaccine’s effectiveness. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 2104–2108. [Google Scholar] [CrossRef] [PubMed]
- Fortanier, A.C.; Venekamp, R.P.; Boonacker, C.W.; Hak, E.; Schilder, A.G.; Sanders, E.A.; Damoiseaux, R.A. Pneumococcal conjugate vaccines for preventing otitis media. Cochrane Database Syst. Rev. 2014, 4, CD001480. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, R.A.; Jefferies, J.M.; Tocheva, A.S.; Beard, K.R.; Garley, D.; Chong, W.W.; Bentley, S.D.; Faust, S.; Clarke, S.C. Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction. Vaccine 2015, 33, 2015–2021. [Google Scholar] [CrossRef]
- Hilty, M.; Qi, W.; Brugger, S.D.; Frei, L.; Agyeman, P.K.A.; Frey, P.; Aebi, S.; Mühlemann, K. Nasopharyngeal Microbiota in Infants with Acute Otitis Media. J. Infect. Dis. 2012, 205, 1048–1055. [Google Scholar] [CrossRef]
- Biesbroek, G.; Wang, X.; Keijser, B.J.; Eijkemans, R.M.; Trzciński, K.; Rots, N.Y.; Veenhoven, R.H.; Sanders, E.A.; Bogaert, D. Seven-Valent Pneumococcal Conjugate Vaccine and Nasopharyngeal Microbiota in Healthy Children. Emerg. Infect. Dis. 2014, 20, 201–210. [Google Scholar] [CrossRef]
- Mika, M.; Maurer, J.; Korten, I.; Allemann, A.; Aebi, S.; Brugger, S.D.; Qi, W.; Frey, U.; Latzin, P.; Hilty, M. Influence of the pneumococcal conjugate vaccines on the temporal variation of pneumococcal carriage and the nasal microbiota in healthy infants: A longitudinal analysis of a case–control study. Microbiome 2017, 5, 85. [Google Scholar] [CrossRef]
- Feazel, L.M.; Santorico, S.A.; Robertson, C.E.; Bashraheil, M.; Scott, J.A.G.; Frank, D.N.; Hammitt, L.L. Effects of Vaccination with 10-Valent Pneumococcal Non-Typeable Haemophilus influenza Protein D Conjugate Vaccine (PHiD-CV) on the Nasopharyngeal Microbiome of Kenyan Toddlers. PLoS ONE 2015, 10, e0128064. [Google Scholar] [CrossRef]
- Kwambana-Adams, B.; Hanson, B.; Worwui, A.; Agbla, S.; Foster-Nyarko, E.; Ceesay, F.; Ebruke, C.; Egere, U.; Zhou, Y.; Ndukum, M.; et al. Rapid replacement by non-vaccine pneumococcal serotypes may mitigate the impact of the pneumococcal conjugate vaccine on nasopharyngeal bacterial ecology. Sci. Rep. 2017, 7, 8127. [Google Scholar] [CrossRef]
- Andrade, D.C.; Borges, I.C.; Bouzas, M.L.; Oliveira, J.R.; Fukutani, K.F.; Queiroz, A.T.; de Oliveira, C.I.; Barral, A.; Van Weyenbergh, J.; Naschimento-Carvalho, C. 10-valent pneumococcal conjugate vaccine (PCV10) decreases metabolic activity but not nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae. Vaccine 2017, 35, 4105–4111. [Google Scholar] [CrossRef] [PubMed]
- Adegbola, R.A.; DeAntonio, R.; Hill, P.C.; Roca, A.; Usuf, E.; Hoet, B.; Greenwood, B.M. Carriage of Streptococcus pneumoniae and Other Respiratory Bacterial Pathogens in Low and Lower-Middle Income Countries: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e103293. [Google Scholar] [CrossRef] [PubMed]
- De Steenhuijsen Piters, W.A.A.; Bogaert, D. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure. mBio 2016, 7, e00009-16. [Google Scholar] [CrossRef] [PubMed]
- Moyano, R.O.; Tonetti, F.R.; Tomokiyo, M.; Kanmani, P.; Vizoso-Pinto, M.G.; Kim, H.; Quilodrán-Vega, S.; Melnikov, V.; Alvarez, S.; Takahashi, H.; et al. The Ability of Respiratory Commensal Bacteria to Beneficially Modulate the Lung Innate Immune Response Is a Strain Dependent Characteristic. Microorganisms 2020, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, F.R.; Tomokiyo, M.; Moyano, R.O.; Quilodrán-Vega, S.; Yamamuro, H.; Kanmani, P.; Melnikov, V.; Kurata, S.; Kitazawa, H.; Villena, J. The Respiratory Commensal Bacterium Dolosigranulum pigrum 040417 Improves the Innate Immune Response to Streptococcus pneumoniae. Microorganisms 2021, 9, 1324. [Google Scholar] [CrossRef] [PubMed]
- Rikitomi, N.; Akiyama, M.; Matsumoto, K. Role of Normal Microflora in the Throat in Inhibition of Adherence of Pathogenic Bacteria to Host Cells. Kansenshogaku Zasshi 1989, 63, 118–124. [Google Scholar] [CrossRef]
- Kanmani, P.; Clua, P.; Vizoso-Pinto, M.G.; Rodriguez, C.; Alvarez, S.; Melnikov, V.; Takahashi, H.; Kitazawa, H.; Villena, J. Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection. Front. Microbiol. 2017, 8, 1613. [Google Scholar] [CrossRef]
- Lappan, R. Using ’Omics Technologies to Understand Pathogenesis and Seek Alternative Therapies for Otitis Media in Children. Ph.D. Thesis, The University of Western Australia, Crawley, Australia, 2019. [Google Scholar] [CrossRef]
Title (Year of Publication) [Ref] | Study Design | N. of Subjects | Age | Environmental Factor | Main Findings |
---|---|---|---|---|---|
The Impact of Breastfeeding on Nasopharyngeal Microbial Communities in Infants (2014) [40] | Comparison of NP microbiota between infants that had received exclusive breastfeeding and children that had received exclusive formula feeding | Exclusive breastfeeding (n = 101) Formula feeding (n = 101) | <6 m (samples collected at 6 weeks and 6 months of age in all subjects) | Breastfeeding | At 6 weeks of age: higher abundance of Dolosigranulum and Corynebacterium and decreased abundance of Staphylococcus and Prevotella in breastfed infants Predominance of Corynebacterium and Dolosigranulum was observed in 44.6% of the breastfed infants compared with 18.8% formula-fed infants; Dolosigranulum abundance was inversely associated with incidence of mild RTIs |
Early Respiratory Microbiota Composition Determines Bacterial Succession Patterns and Respiratory Health in Children (2014) [41] | Longitudinal URT microbiota analysis in healthy children in the first 2 years of life | 60 healthy children | <2 years (samples collected at 1.5, 6, 12, and 24 months of age) | Breastfeeding | Stable developmental patterns were characterized by early presence and higher abundance of Moraxella and Corynebacterium/Dolosigranulum Moraxella and Corynebacterium/Dolosigranulum dominated profiles were associated with breastfeeding and with lower rates of RTIs |
Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences A Prospective Cohort Study (2017) [42] | Longitudinal URT microbiota analysis in healthy children during the first year of life | 112 infants (1121 samples) | <1 year (samples collected 2 h after birth, at 24 h, at 7 and 14 days, at 1, 2, 3, 4, 6, 9, and 12 months of age) | Breastfeeding Delivery route Daycare attendance | A higher incidence of RTIs in the first year of life was associated with an altered microbiota development from the first month of life on, consisting in a prolonged reduction of Corynebacterium and Dolosigranulum, early enrichment of Moraxella, later enrichment of Neisseria and Prevotella spp. Independent drivers of these aberrant alterations were delivery route, feeding practices, crowding, recent antibiotic use |
Nasopharyngeal Microbiota in Children With Invasive Pneumococcal Disease: Identification of Bacteria With Potential Disease-Promoting and Protective Effects (2019) [43] | Comparison of URT microbiota in children with IPD and healthy controls | 56 children (28 with IPD and 28 healthy children) | IPD group: 20.8–60.2 months (median 43 m) Control group: 31.6–58.9 (median 42.6 m) | Breastfeeding | Dolosigranulum dominated profiles appeared to be more resistant to pneumococcal infection occurrence and severity A higher proportion of Dolosigranulum dominated profiles was identified in healthy controls that were breastfed A significant negative correlation was observed between Dolosigranulum vs. Streptococcus (p = 0.029) |
Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy (2021) [44] | Longitudinal URT microbiota analysis in mother-infants dyads | 179 mother–infant dyads (1368 infant and 172 maternal samples) | <1 year (NP swabs collected monthly between 0–6 months of age and bimonthly between 6–12 months) | Breastfeeding Season | Strong negative association between the relative abundance of Corynebacterium and S. pneumoniae colonization rate Breastfeeding was associated with an increase in Corynebacterium relative abundance Antibiotic exposures and the winter season related to a decline in the relative abundance of Corynebacterium |
Differential nasopharyngeal microbiota composition in children according to respiratory health status (2021) [45] | Prospective case–control study. NP microbiota analysis in three groups of children: cases with IPD, symptomatic controls with mild viral URTI, and health controls | 140 (IPD = 27; URTI = 48; healthy = 65). | IPD: 19.0–49.5 m (median 33 m) URTI: 14.7–45.0 m (median 24.5 m) Healthy controls: 19.0–43.0 m (median 31 m) | Breastfeeding | IPD group was characterized by a higher representation of S. pneumoniae and a reduced abundance of Dolosigranulum and Moraxella lincolnii A longer duration of breastfeeding seemed to influence the microbiota structure; however, the authors did not evidence a significant enrichment in beneficial bacteria in children breastfed for at least 6 months |
The Influence of FUT2 and FUT3 Polymorphisms and Nasopharyngeal Microbiome on Respiratory Infections in Breastfed Bangladeshi Infants from the Microbiota and Health Study (2021) [48] | Longitudinal URT microbiota analysis through shotgun metagenomics in a cohort of breastfed infants and the potential influence of fucosylated human milk oligosaccharides (HMOs) on its composition and ARI incidence in the first two years of life | 240 children (422 total samples) | <2 y | Breastfeeding Season | Maternal secretor status was associated with reduced ARI incidence from birth to 6 months HMOs could act through an immunomodulatory effect, rather than through an impact on microbiota composition Season at sampling was the most relevant environmental factor shaping the microbial communities |
Development of Upper Respiratory Tract Microbiota in Infancy is Affected by Mode of Delivery (2016) [59] | Longitudinal NP microbiota analysis in the first 6 months of life; comparison between URT microbiota in vaginally delivered children with those born by CS | 102 (Vaginal delivery = 62; CS = 40) 761 total samples | <6 m | Delivery route | Niche differentiation occurs in the first week of life, initially with Staphylococcus aureus predominance, followed by differentiation towards Corynebacterium pseudodiphteriticum/propinquum, Dolosigranulum pigrum, Moraxella catarrhalis/nonliquefaciens, Streptococcus pneumoniae, and/or Haemophilus influenzae dominated communities Delay in microbiota development and reduced abundance of Corynebacterium and Dolosigranulum in infants born by CS |
Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns (2010) [60] | Characterization of bacterial communities from mothers and newborn babies in different body sites (mothers’ skin, oral mucosa, and vagina; neonates’ skin, oral mucosa, URT, and meconium) | 10 (4 born vaginally, 6 born by CS) | Neonates (samples collected in the first hours of life) | Delivery route | Vaginally delivered infants acquire bacterial communities similar to their mother’s vaginal microbiota (Lactobacillus, Prevotella, Sneathia spp.) CS delivered infants harbored bacterial communities similar to those found on the skin surface (Staphylococcus, Corynebacterium, and Propionibacterium spp.) |
Nasopharyngeal microbiome analyses in otitis-prone and otitis-free children (2021) [72] | Comparison of URT microbiota in sOP and otitis-free children at 6 and 12 months of age | 28 sOP children 68 AOM-free children (157 total samples) | <1 y (samples collected at 6 and 12 months of age) | Daycare attendance | A different global microbiome profile was observed in the NP microbiome of sOP children when 6 months old Bacillus, Prevotella, Gemella, Veillonella, and Actinomyces were less abundant in sOP samples The two most important factors associated with these differences were S. pneumoniae colonization and daycare attendance |
Variability and Diversity of Nasopharyngeal Microbiota in Children: A Metagenomic Analysis (2011) [80] | NP microbiota analysis in healthy children; comparison of microbial composition between children sampled in winter/fall with children sampled in spring | 96 healthy children | All samples collected at 18 m of age | Season | Winter samples were characterized by a higher relative abundance of Proteobacteria (75% versus 51% in spring) and Fusobacteria (14% versus 2% in spring); spring samples had a higher abundance of Bacteroidetes (relative abundance: 19% versus 3% in fall/winter), and Firmicutes |
Dynamics of the nasal microbiota in infancy: A prospective cohort study (2015) [81] | Longitudinal URT microbiota analysis in unselected infants in the first year of life | 47 unselected infants (872 total samples collected biweekly) | <1 y | Season | Relative abundance and microbiota composition differed significantly according to season, as Corynebacteriaceae were more abundant in summer months, while Pasteurellacee were more abundant during winter |
Season of Birth Impacts the Neonatal Nasopharyngeal Microbiota (2020) [82] | Analysis of neonatal URT microbiota and its relation with perinatal risk factors | 328 samples | 1 m | Season | Early NP microbiota is significantly affected by birth season Gram-negative alpha-proteobacteria and Gram-positive Bacilli were more abundant in the nasopharynx of summer-born children |
Household siblings and nasal and fecal microbiota in infants (2017) [89] | Cross-sectional analysis of nasal and fecal microbiota and its relation with siblings | 105 healthy children | <1 y (median age 3.4 m) | Siblings | Infants with siblings were more likely to have a Moraxella dominated profile than Corynebacterium/Dolosigranulum dominated profile (76% vs. 18%) |
Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing (2018) [90] | Longitudinal nasal microbiota analysis of infants with rhinitis and wheeze in the first 18 months of life and healthy controls | 122 children divided in 3 groups: patients with rhinitis alone (n = 28), patients with rhinitis and concomitant wheeze (n = 34), healthy controls (n = 60) | <18 m | Siblings Daycare attendance Delivery route | Control group showed a higher abundance of Corynebacteriaceae and early colonization with Staphylococcaceae Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, daycare attendance |
Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study (2021) [95] | Longitudinal study investigating the association of greenness and air pollution with the nasal microbiota in the first year of life | 47 healthy infants 846 swabs collected | <1 year | Pollution | Distinct microbiota profiles for different PM2.5 exposure levels. Increased NO2 was associated with reduced abundance of Corynebacteriaceae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folino, F.; Bosi, P.; Torretta, S.; Gaffuri, M.; Marchisio, P. Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Appl. Microbiol. 2022, 2, 594-613. https://doi.org/10.3390/applmicrobiol2030046
Folino F, Bosi P, Torretta S, Gaffuri M, Marchisio P. Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Applied Microbiology. 2022; 2(3):594-613. https://doi.org/10.3390/applmicrobiol2030046
Chicago/Turabian StyleFolino, Francesco, Pietro Bosi, Sara Torretta, Michele Gaffuri, and Paola Marchisio. 2022. "Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View" Applied Microbiology 2, no. 3: 594-613. https://doi.org/10.3390/applmicrobiol2030046
APA StyleFolino, F., Bosi, P., Torretta, S., Gaffuri, M., & Marchisio, P. (2022). Recurrent Acute Otitis Media Environmental Risk Factors: A Literature Review from the Microbiota Point of View. Applied Microbiology, 2(3), 594-613. https://doi.org/10.3390/applmicrobiol2030046