The Industrial Fermentation Process and Clostridium Species Used to Produce Biobutanol
Abstract
:1. Introduction
2. The Use of the Industrial ABE Fermentation in Different Countries/Regions
3. The Current Status of the Industrial Fermentation Route for Solvent Production
3.1. Developments in Genetic and Metabolic Engineering
3.2. Developments in Process Technology and Downstream Product Recovery
3.3. Progress in Butanol Production from Alternative Renewable Biomass
4. Surviving Species and Strains of Industrial Solvent-Producing Clostridia
5. The Choice, Nature and Utilization of the Standard Industrial Fermentation Substrates
5.1. The Industrial Process Using Maize and Other Starch-Based Raw Materials
5.2. The Industrial Process Using Cane Molasses and Other Sugar-Based Raw Materials
5.3. Composition and Quality of Blackstrap Molasses
6. Key Factors Affecting Performance in the Batch Industrial Fermentation Process
6.1. Biphasic and Monophasic Batch Fermentations
6.2. Endospore Formation and the Use of Spore Stocks for Maintaining Industrial Strains
6.3. Solvent Ratios and Productivity
6.4. Solvent Yields
6.5. Solvent Titres and Butanol Toxicity
7. Key Features of the Four Industrial Species
7.1. The C. acetobutylicum Industrial Strains
7.2. The Industrial Saccharolytic Solvent-Producing Species
7.3. The Diversity within C. beijerinckii Species
7.4. The C. beijerinckii Group 2 Industrial Strains
7.5. The C. beijerinckii Group 4 Industrial Strains
7.6. The C. saccharobutylicum Industrial Strains
7.7. The C. saccharoperbutylacetonicum Industrial Strain
8. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, D.T.; Woods, D.R. Acetone-Butanol fermentation revisited. Microbiol. Rev. 1986, 50, 484–524. [Google Scholar] [CrossRef]
- Jones, D.T.; Schulz, F.; Roux, S.; Brown, S.D. Solvent-producing clostridia revisited. Microorganisms 2023, 11, 2253. [Google Scholar] [CrossRef]
- Beesch, S.C. Acetone-butanol fermentation of starches. Appl. Microbiol. 1953, 1, 85–95. [Google Scholar] [CrossRef]
- Gabriel, C.L.; Crawford, F.M. Development of the butyl-acetonic fermentation industry. Ind. Eng. Chem. 1930, 22, 1163–1165. [Google Scholar] [CrossRef]
- Beesch, S.C. Acetone-butanol fermentation of sugars. Ind. Eng. Chem. 1952, 44, 1677–1682. [Google Scholar] [CrossRef]
- Hildebrandt, F.M. Recent progress in industrial fermentation. Adv. Enzymol. 1947, 7, 557–615. [Google Scholar]
- McCutchan, W.N.; Hickey, R.J. The butanol-acetone fermentations. Ind. Ferment. 1954, 1, 347–388. [Google Scholar]
- Walton, M.T.; Martin, J.L. Production of butanol acetone by fermentation. In Microbial Technology, Vol. 1. Microbial Processes, 2nd ed.; Peppler, H.J., Perlman, D., Eds.; Academic Press: New York, NY, USA, 1979; Volume 1, pp. 187–209. [Google Scholar]
- Hastings, J.H.J. Acetone-butyl alcohol fermentation. In Economic Microbiology, Vol. 2. Primary Products of Metabolism; Rose, A.H., Ed.; Academic Press: New York, NY, USA, 1978; pp. 31–45. [Google Scholar]
- Ross, D. The acetone-butanol fermentation. Prog. Ind. Microbiol. 1961, 3, 73–85. [Google Scholar]
- Ryden, R. Development of anaerobic fermentation processes: Acetone-butanol. In Biochemical Engineering; Steel, R., Ed.; Heywood: London, UK, 1958; pp. 126–148. [Google Scholar]
- Jones, D.T. Applied acetone-butanol fermentation. In Clostridia: Biotechnology and Medical Applications; Bahl, H., Dürre, P., Eds.; Wiley: New York, NY, USA, 2001; pp. 125–168. [Google Scholar]
- Spivey, M.J. Acetone-butanol-ethanol fermentation. Process Biochem. 1978, 13, 2–5. [Google Scholar]
- Berezina, O.V.; Zakharova, N.V.; Yarotsky, C.V.; Zverlov, V.V. Microbial producers of butanol. Appl. Biochem. Microbiol. 2012, 48, 625–638. [Google Scholar] [CrossRef]
- Zverlov, V.V.; Berezina, O.; Velikodvorskaya, G.A.; Schwarz, W.H. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: Use of hydrolyzed agricultural waste for biorefinery. Appl. Microbiol. Biotechnol. 2006, 71, 587–597. [Google Scholar] [CrossRef]
- Jones, D.T. The strategic importance of Butanol for Japan during WWII: A case study of the Butanol fermentation process in Taiwan and Japan. In Systems Biology of Clostridium; Dürre, P., Ed.; Imperial College Press: London, UK, 2014; pp. 220–272. [Google Scholar]
- Chiao, J.; Sun, Z. History of the acetone-butanol-ethanol fermentation industry in China: Development of continuous production technology. J. Mol. Microbiol. Biotechnol. 2007, 13, 12–14. [Google Scholar] [CrossRef]
- Ni, Y.; Sun, Z. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl. Biochem. Microbiol. 2009, 83, 415–423. [Google Scholar] [CrossRef]
- Green, E.M. Fermentative production of butanol—The industrial perspective. Curr. Opin. Biotechnol. 2011, 22, 337–343. [Google Scholar] [CrossRef]
- Nanda, S.; Dalai, A.K.; Kozinski, J.A. Butanol from renewable biomass: Highlights of downstream processing and recovery techniques. In Sustainable Utilization of Natural Resources; Mondal, P., Dalai, A.K., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Chapter 7. [Google Scholar]
- Dürre, P. Fermentative butanol production—Bulk chemical and biofuel. Ann. N. Y. Acad. Sci. 2008, 1125, 353–362. [Google Scholar] [CrossRef]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Bioproduction of butanol from biomass: From genes to bioreactors. Curr. Opin. Biotechnol. 2007, 18, 220–227. [Google Scholar] [CrossRef]
- Köpke, M.; Dürre, P. Biochemical production of biobutanol. In Handbook of Biofuels Production: Processes and Technologies; Luque, R., Campelo, J., Clark, J., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 221–257. [Google Scholar]
- Fairhurst, N.W.G.; Harper, R.A.; Smith, H.K.; Speight, L.S.; Clements, J.S., II; Jenkinson, E.R. Engineering solventogenic clostridia for commercial production of bio-chemicals. Eng. Biol. 2019, 3, 41–45. [Google Scholar] [CrossRef]
- Gyulev, I.S.; Willson, B.J.; Hennessy, R.C.; Krabben, P.; Jenkinson, E.R.; Thomas, G.H. Part by part: Synthetic biology parts used in solventogenic clostridia. ACS Synth. Biol. 2018, 7, 311–327. [Google Scholar] [CrossRef]
- Tomas, C.A.; Tummala, S.B.; Papoutsakis, E.T. Metabolic engineering of solventogenic clostridia. In Handbook on Clostridia; Dürre, P., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 813–830. [Google Scholar]
- Ezeji, T.C.; Liu, S.; Qureshi, N. Mixed sugar fermentation by clostridia and metabolic engineering for butanol production. In Biorefineries—Integrated Biochemical Processes for Liquid Biofuels; Nasib Qureshi, N., Hodge, D.B., Vertès, A.A., Eds.; Elsevier B. V.: Amsterdam, The Netherlands, 2014; pp. 191–204. [Google Scholar]
- Ezeji, T.C.; Qureshi, N.; Blaschek, H.P. Butanol fermentation research: Upstream and downstream manipulations. Chem. Record 2004, 4, 305–314. [Google Scholar] [CrossRef]
- Qureshi, N.; Blaschek, H.P. Butanol recovery from model solution/fermentation broth by pervaporation: Evaluation of membrane performance. Biomass Bioenergy 1999, 17, 175–184. [Google Scholar] [CrossRef]
- Ezeji, T.; Milne, C.; Price, N.D.; Blaschek, H.P. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 2010, 85, 1697–1712. [Google Scholar] [CrossRef]
- Guo, J.; Ho, J.C.S.; Chin, H.; Mark, A.E.; Zhou, C.; Kjelleberg, S.; Liedberg, B.; Parikh, A.N.; Cho, N.-J.; Hinks, J.; et al. Response of microbial membranes to butanol: Interdigitation vs. disorder. Phys. Chem. Chem. Phys. 2019, 21, 11903–11915. [Google Scholar] [CrossRef]
- Sandoval, N.R.; Papoutsakis, E.T. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes. Curr. Opin. Microbiol. 2016, 33, 56–66. [Google Scholar] [CrossRef]
- Weizmann, C. Production of Acetone and Alcohol by Bacterial Processes. U.S. Patent 1,315,585, 9 September 1919. [Google Scholar]
- Jones, D.T.; Keis, S. Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol. Rev. 1995, 17, 223–232. [Google Scholar] [CrossRef]
- Johnson, J.L.; Toth, J.; Santiwatanakul, S.; Chen, J.S. Cultures of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA-DNA reassociation. Int. J. Syst. Bacteriol. 1997, 47, 420–424. [Google Scholar] [CrossRef]
- Keis, S.; Bennett, C.F.; Ward, V.K.; Jones, D.T. Taxonomy and phylogeny of industrial solvent-producing clostridia. Int. J. Syst. Bacteriol. 1995, 45, 693–705. [Google Scholar] [CrossRef]
- Keis, S.; Shaheen, R.; Jones, D.T. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int. J. Syst. Evol. Microbiol. 2001, 51, 2095–2103. [Google Scholar] [CrossRef]
- Jensen, R.O.; Schulz, F.; Roux, S.; Klingeman, D.M.; Reynoso, V.; Winkler, J.; Nagaraju, S.; Mitchell, W.P.; Moraïs, S.; De Tissera, S.; et al. Phylogenomics and genetic analysis of solvent-producing Clostridium species. Sci. Data 2024, 10, 432. [Google Scholar] [CrossRef]
- Poehlein, A.; Solano, J.D.M.; Flitsch, S.K.; Krabben, P.; Winzer, K.; Reid, S.J.; Jones, D.T.; Green, E.; Minton, N.P.; Daniel, R.; et al. Microbial solvent formation revisited by comparative genome analysis. Biotechnol. Biofuels 2017, 10, 58. [Google Scholar] [CrossRef]
- Qureshi, N.; Blaschek, H.P. ABE production from corn: A recent economic evaluation. J. Ind. Microbiol. Biotechnol. 2001, 27, 292–297. [Google Scholar] [CrossRef]
- Tao, L.; He, X.; Tan, E.C.D.; Zhang, M.; Aden, A. Comparative techno-economic analysis and reviews of n-butanol production from corn grain and corn stover. Biofuels Bioprod. Bioref. 2014, 8, 342–361. [Google Scholar] [CrossRef]
- Jones, D.T.; van der Westhuizen, A.; Long, S.; Allcock, E.R.; Reid, S.J.; Woods, D.R. Solvent production and morphological changes in Clostridium acetobutylicum. Appl. Environ. Microbiol. 1982, 43, 1434–1439. [Google Scholar] [CrossRef]
- Davies, E.T. Green Biologics Ltd.: Commercialising bio-n-butanol. Green Process. Synth. 2013, 2, 273–276. [Google Scholar] [CrossRef]
- Green, E.; Simms, R.P.; Magnusson, C.-A.; Dominguez-Espinosa, R.M. Solvent Production. U.S. Patent 10,150,974, 11 December 2018. [Google Scholar]
- Linney, J.A.; Routledge, S.J.; Connell, S.D.; Larson, T.R.; Pitt, A.R.; Jenkinson, E.R.; Goddard, A.D. Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum. Biochim. Biophys. Acta 2023, 1865, 184217. [Google Scholar] [CrossRef]
- Nolling, J.; Breton, G.; Omelchenko, M.V.; Makarova, K.S.; Zeng, Q.D.; Gibson, R.; Lee, H.M.; Dubois, J.; Qiu, D.Y.; Hitti, J.; et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 2001, 183, 4823–4838. [Google Scholar] [CrossRef]
- Dusseaux, S.; Croux, C.; Soucaille, P.; Meynial-Salles, I. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab. Eng. 2013, 18, 1–8. [Google Scholar] [CrossRef]
- Foulquier, C.; Riviere, A.; Heulot, M.; Dos Reis, S.; Perdu, C.; Girbal, L.; Pinault, M.; Dusseaux, S.; Yoo, M.; Soucaille, P.; et al. Molecular characterization of the missing electron pathways for butanol synthesis in Clostridium acetobutylicum. Nat. Commun. 2022, 13, 4691. [Google Scholar] [CrossRef]
- Nguyen, N.-P.-T.; Raynaud, C.; Meynial-Salles, I.; Soucaille, P. Reviving the Weizmann process for commercial n-butanol production. Nat. Commun. 2018, 9, 3682. [Google Scholar] [CrossRef]
- Yoo, M.; Bestel-Corre, G.; Croux, C.; Riviere, A.; Meynial-Salles, I.; Soucaille, P. A quantitative system-scale characterization of the metabolism of Clostridium acetobutylicum. MBIo 2015, 6, e01808–e01815. [Google Scholar] [CrossRef]
- Zou, W.; Ye, G.B.; Liu, C.J.; Zhang, K.Z.; Li, H.H.; Yang, J.G. Comparative genome analysis of Clostridium beijerinckii strains isolated from pit mud of Chinese strong flavor baijiu ecosystem. Genes Genom. Genet. 2021, 11, jkab317. [Google Scholar] [CrossRef]
- Sedlar, K.; Nykrynova, M.; Bezdicek, M.; Branska, B.; Lengerova, M.; Patakova, P.; Skutkova, H. Diversity and evolution of Clostridium beijerinckii and complete genome of the Type Strain DSM 791(T). Processes 2021, 9, 1196. [Google Scholar] [CrossRef]
- Arzberger, C. Process for the Production of Butyl Alcohol by Fermentation. U.S. Patent 2,050,219, 4 August 1936. [Google Scholar]
- Legg, D.; Walton, M. Butyl Alcohol Fermentation. U.S. Patent 2,132,358, 4 October 1938. [Google Scholar]
- McCoy, E. Production of Butyl Alcohol and Acetone by Fermentation. U.S. Patent 2,110,109, 1 April 1938. [Google Scholar]
- Blaschek, H.; Annous, B.; Formanek, B.; Chen, C.-K. Method of Producing Butanol Using a Mutant Strain of Clostridium beijerinckii. U.S. Patent 6,358,717, 19 April 2002. [Google Scholar]
- Qureshi, N.; Blaschek, H.P. Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl. Biochem. Biotechnol. 2000, 84–86, 225–235. [Google Scholar] [CrossRef] [PubMed]
- McCoy, E. Production of Butyl Alcohol and Acetone by Fermentation. U.S. Patent 2,398,837, 23 April 1946. [Google Scholar]
- McCoy, E.; McDaniel, L.E.; Sylvester, J.C. Bacteriophage in a butyl fermentation plant. J. Bacteriol. 1944, 47, 443. [Google Scholar]
- Hermann, M.; Fayole, F.; Marchal, R.M. Production of Clostridium acetobutylicum Mutants of High Butanol and Acetone Productivity, the Resultant Mutants and the Use of These Mutants in the Joint Production of Butanol and Acetone. U.S. Patent 4,757,010, 12 July 1988. [Google Scholar]
- Müller, J. Butyl-Acetone Fermentation Process and Inoculant. U.S. Patent 2,195,629, 2 April 1940. [Google Scholar]
- Hongo, M.; Murata, A.; Kono, K.; Kato, F. Lysogeny and bacteriocinogeny in strains of Clostridium species. Agric. Biol. Chem. 1968, 32, 27–33. [Google Scholar] [CrossRef]
- Shaheen, R. Solvent-Producing Clostridia. Master’s Thesis, University of Otago, Dunedin, New Zealand, 1997. [Google Scholar]
- Shaheen, R.; Shirley, M.; Jones, D.T. Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J. Mol. Microbiol. Biotechnol. 2000, 2, 115–124. [Google Scholar] [PubMed]
- Huang, H.; Singh, V.; Qureshi, N. Butanol production from food waste: A novel process for producing sustainable energy and reducing environmental pollution. Biotechnol. Biofuels 2015, 8, 1–12. [Google Scholar] [CrossRef]
- Qureshi, N.; Bowman, M.J.; Saha, B.C.; Hector, R.; Berhow, M.A.; Cotta, M.A. Effect of cellulosic sugar degradation products (furfural and hydroxymethyl furfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod. Process. 2012, 90, 533–540. [Google Scholar] [CrossRef]
- Qureshi, N.; Lin, X.; Tao, S.; Liu, S.; Huang, H.; Nichols, N.N. Can xylose be fermented to biofuel butanol in continuous long-term reactors: If not, what options are there? Energies 2023, 16, 4945. [Google Scholar] [CrossRef]
- Qureshi, N.; Saha, B.; Liu, S.; Harry-O’kuru, R. Production of acetone-butanol-ethanol (ABE) from concentrated yellow top presscake using Clostridium beijerinckii P260. J. Chem. Technol. Biotechnol. 2020, 95, 614–620. [Google Scholar] [CrossRef]
- Reeve, B.W.P. Nitrogen Metabolism and Butanol Production by South African Clostridium beijerinckii and Clostridium saccharobutylicum Strains. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2014. [Google Scholar]
- Arzberger, C. Butyl Alcohol Fermentation Process. U.S. Patent 2,139,108, 6 December 1938. [Google Scholar]
- Carnarius, E.H. Butyl Alcohol Fermentation Process. U.S. Patent 2,198,104, 23 April 1940. [Google Scholar]
- Carnarius, E.H.; McCutchan, W.N. Process for the Production Of butyl Alcohol by Fermentation. U.S. Patent 2,139,111, 6 December 1938. [Google Scholar]
- Hongo, M. Process for Producing Butanol by Fermentation. U.S. Patent 2,945,786, 19 July 1960. [Google Scholar]
- Ogata, S.; Hongo, M. Bacteriophages of the genus Clostridium. Adv. Appl. Microbiol. 1979, 25, 241–273. [Google Scholar]
- Ambarsari, H.; Sonomoto, K. Production of acetone, butanol and ethanol as bioenergy source materials by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using different substrates. Microbiol. Indones. 2013, 7, 113–123. [Google Scholar] [CrossRef]
- Darmayanti, R.F.; Susanti, A.; Setiawan, F.A.; Rizkiana, M.F.; Muharja, M.; Aji, B.B.; Prasiefa, M.G.; Dewi, L.T.; Yanti, Z.A. Exploring starch sources for the refreshment process of acetone-butanol-ethanol fermentation with Clostridium saccharoperbutylacetonicum N1-4. Int. J. Technol. 2021, 12, 309–319. [Google Scholar] [CrossRef]
- Richter, H.; Qureshi, N.; Heger, S.; Dien, B.; Cotta, M.A.; Angenent, L.T. Prolonged conversion of n-butyrate to n-butanol with Clostridium saccharoperbutylacetonicum in a two-stage continuous culture with in-situ product removal. Biotechnol. Bioeng. 2012, 109, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Takeda, K.; Kobayashi, G.; Sonomoto, K.; Ishizaki, A.; Yoshino, S. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 2004, 98, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Poehlein, A.; Krabben, P.; Duerre, P.; Daniel, R. Complete genome sequence of the solvent producer Clostridium saccharoperbutylacetonicum strain DSM 14923. Genome Announc. 2014, 2, e01056-14. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.I.; Baker, J.A.; Krabben, P.; Davies, E.T.; Jenkinson, E.R.; Goodhead, I.B.; Robinson, G.K.; Shepherd, M. Deletion of glyceraldehyde-3-phosphate dehydrogenase (gapN) in Clostridium saccharoperbutylacetonicum N1-4(HMT) using CLEAVE (TM) increases the ATP pool and accelerates solvent production. Microb. Biotechnol. 2022, 15, 1574–1585. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, S.; Wang, P.; Tao, Y.; Wang, Y. Genome editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2017, 83, e00233-17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, P.; Wang, X.; Feng, J.; Sandhu, H.S.; Wang, Y. Enhancement of sucrose metabolism in Clostridium saccharoperbutylacetonicum N1-4 through metabolic engineering for improved acetone-butanol-ethanol (ABE) fermentation. Bioresour. Technol. 2018, 270, 430–438. [Google Scholar] [CrossRef]
- Baur, S.T.; Markussen, S.; Di Bartolomeo, F.; Poehlein, A.; Baker, A.; Jenkinson, E.R.; Daniel, R.; Wentzel, A.; Duerre, P. Increased butyrate production in Clostridium saccharoperbutylacetonicum from lignocellulose-derived sugars. Appl. Environ. Microbiol. 2022, 88, e02419-21. [Google Scholar] [CrossRef]
Clostridium acetobutylicum Species | ||||||
---|---|---|---|---|---|---|
McCoy B | Strain Origin | ATCC | NRRL | NCIMB | DSM | JCM |
B-3 | Weizmann > CSC | 6441 | 1733 | |||
B-5 | Weizmann > Speakman | 6442 | ||||
B-10 | Weizmann > Speakman | 6443 | ||||
B-15 | C. acetonigenum > Kluyver > Donker > Speakman | 862 * | B-528 | |||
B-16 | Weyer Type strain | 82 | B-527 | 8052 ** | 792 | 19,013 |
B-27 | C. baconyi > Castell | 8529 | 1738 | |||
B-28 | Hall strain | 3625 | B-529 | 1737 | ||
B-29 | B. butylicus > Lister > Thaysen | 4259 | B-530 | 619 | 1731 | 19,012 |
- | Weizmann > Thaysen | 2951 | 1732 | |||
Costridium beijerinckii Species | ||||||
McCoy A | Strain Origin | ATCC | NRRL | NCIMB | DSM | JCM |
A8 | McCoy isolate > CSC | B-591 | 19,002 | |||
A13 | McCoy isolate | 6444 | ||||
A14 | McCoy isolate | 10,132 | B-594 | 8049 | 1739 | 19,011 |
A14 | McCoy isolate—ATCC 824T contaminant | 8052 | ||||
A16 | McCoy isolate > C. madisonii | |||||
A21 | C. butylicum > Beijerinck > Kluyver | B-593 | 9380 | 6423 | ||
A38 | B. butyicus—FB BB Fernbach > Andrewes | B-596 | ||||
A39 | B. fitz > Pasteur Institute | B-592 | 6422 | 19,008 | ||
A39? | Donker > Reid 39-90 | B-466 | ||||
A48 | B. bakoni > Castell | 8529 | ||||
A51 | C. multifermentans | 3538 | ||||
A65 | C. pasterianum > Winogradski | 861 | ||||
A67 | C. beijerinckii—Kluyver | 858 | 11,373 | 1820 | 1319 | |
A67 | C. beijerinkii > Kluyver > McCoy > McClung | 25,752 | 9362 | 791 | 1390 | |
A72 | C. amylobacter > Haseehoff > Pribram | B-597 | ||||
A75 | B. saccharobutyricus > von Kleeki > Pribram | 6015 | 19,003 | |||
A77 | C. pasteurianum > Bezssonoff > Pribram | B-598 | ||||
A79 | C. butyricum—Parazmonski > Pribram | 6014 | 19,007 |
(A) | Yield | 28% | 28% | 30% | 30% | 33% | 33% |
Strain Ratios | Sugar | Solvents | Butanol | Solvents | Butanol | Solvents | Butanol |
60:30:10 | 5.0% | 14.0 | 8.4 | 15.0 | 9.0 | 16.0 | 9.6 |
65:32:3 | 5.0% | 14.0 | 9.1 | 15.0 | 9.75 | 16.0 | 10.4 |
70:27:3 | 5.0% | 14.0 | 9.4 | 15.0 | 10.5 | 16.0 | 11.2 |
75:22:3 | 5.0% | 14.0 | 10.5 | 15.0 | 11.25 | 16.5 | 12.38 |
80:16:4 | 5.0% | 14.0 | 11.3 | 15.0 | 12.0 | 16.5 | 13.2 |
(B) | Yield | 28% | 28% | 30% | 30% | 33% | 33% |
Strain Ratios | Sugar | Solvents | Butanol | Solvent | Butanol | Solvents | Butanol |
60:30:10 | 6.5% | 18.2 | 10.92 | 19.5 | 11.7 | 21.45 | 12.87 |
65:32:3 | 6.5% | 18.2 | 11.83 | 19.5 | 12.68 | 21.45 | 13.94 |
70:27:3 | 6.5% | 18.2 | 12.47 | 19.5 | 13.65 | 21.45 | 15.02 |
75:22:3 | 6.5% | 18.2 | 13.65 | 19.5 | 14.63 | 21.45 | 16.09 |
80:16:4 | 6.5% | 18.2 | 14.56 | 19.5 | 15.6 | 21,45 | 17.16 |
Source | Strains | Sugar % | Solvents g/L | Yield % | Butanol g/L | Butanol % | Acetone % | Ethanol % |
---|---|---|---|---|---|---|---|---|
CSC data | A strain | 7 | 22 | 32 | 13.2 | 58 | 38 | 4 |
CSC data | Gamma C | 7 | 21 | 30 | 12.8 | 61 | 35 | 4 |
CSC data | Delta B | 5.5 | 17.5 | 32 | 13 | 74 | 23 | 3 |
CSC data | Delta F | 5.5 | 17.5 | 32 | 13 | 75 | 22 | 3 |
CSC data | Delta G | 5.5 | 18 | 30 | 13 | 74 | 23 | 3 |
CSC plant | A & Gamma | 6 | 20 | 33 | 13 | 60 | 36 | 4 |
CSC plant | Delta B, F, G | 5.5 | 18 | 33 | 13 | 74 | 23 | 3 |
CS-GB plant | Gamma or A | 6 | 20 | 33 | 13l | 65 | 30 | 5 |
NCP plant | Delta B+F | 6 | 18 | 31 | 12 | 65 | 32 | 3 |
NCP lab | BAS+P strains | 6.5 | 20 | 31 | 13 | 56 | 32 | 3 |
UCT lab | P262 | 6 | 20 | 33 | 13 | 65.5 | 31 | 3.5 |
U Otago lab | BAS/B3 | 6 | 18.5 | 31 | 12 | 65 | 32.5 | 3 |
U Otago lab | BAS/SW | 6 | 19.5 | 32.5 | 12.7 | 65 | 32 | 3 |
U Otago lab | 37/3 UK | 6 | 18 | 30 | 11.6 | 65 | 32 | 3 |
U Otago lab | 162/B1 UK | 6 | 18.9 | 32 | 12.4 | 66 | 31 | 3 |
U Otago lab | P108 | 6 | 18 | 30 | 13 | 72 | 25 | 3 |
U Otago lab | P200 | 6 | 14 | 23 | 10 | 61 | 36 | 3 |
U Otago lab | P258 | 6 | 13 | 22 | 9 | 70 | 26 | 4 |
U Otago lab | P262 | 6 | 16.6 | 28 | 10.5 | 71 | 26 | 3 |
U Otago lab | P272 | 6 | 14 | 23 | 9.4 | 67 | 27 | 6 |
GBL lab | Best strains | 6 | 17.5 | 29 | 11 | 62 | 35 | 3 |
Subgroups | 1A | 1B | 2 | 3 |
---|---|---|---|---|
Genomes | 11 | 12 | 35 | 3 |
Size(Mb) | 5.12 | 5.08 | 4.99 | 4.91 |
GC% | 28.7 | 28.7 | 28.4 | 28.4 |
CDS | 4256 | 4167 | 4176 | 4159 |
Genes | 4537 | 4473 | 4400 | 4387 |
Pseudogene | 164 | 173 | 141 | 139 |
rRNA | 39 | 38 | 12 | 12 |
tRNA | 92 | 93 | 67 | 72 |
Other RNA | 4 | 4 | 4 | 5 |
Prophage 1 | 41,439 | 52,015 | 34,321 | 47,627 |
Prophage 2 | 27,734 | 64,708 | 51,205 | 24,405 |
Prophage 3 | 48,838 | 48,838 | 104,527 | 48,145 |
Tailocin | 0 | 0 | 0 | 38,384 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, D.T. The Industrial Fermentation Process and Clostridium Species Used to Produce Biobutanol. Appl. Microbiol. 2024, 4, 894-917. https://doi.org/10.3390/applmicrobiol4020061
Jones DT. The Industrial Fermentation Process and Clostridium Species Used to Produce Biobutanol. Applied Microbiology. 2024; 4(2):894-917. https://doi.org/10.3390/applmicrobiol4020061
Chicago/Turabian StyleJones, David T. 2024. "The Industrial Fermentation Process and Clostridium Species Used to Produce Biobutanol" Applied Microbiology 4, no. 2: 894-917. https://doi.org/10.3390/applmicrobiol4020061
APA StyleJones, D. T. (2024). The Industrial Fermentation Process and Clostridium Species Used to Produce Biobutanol. Applied Microbiology, 4(2), 894-917. https://doi.org/10.3390/applmicrobiol4020061