Prediction of Paracetamol Solubility in Binary Solvents Using Reichardt’s Polarity Parameter Combined Model
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duncan, C.; Watson, D.; Stein, A. Diagnosis and management of headache in adults: Summary of SIGN guideline. BMJ 2008, 337, a2329. [Google Scholar] [CrossRef] [PubMed]
- Jibril, F.; Sharaby, S.; Mohamed, A.; Wilby, K.J. Intravenous versus oral acetaminophen for pain: Systematic review of current evidence to support clinical decision-making. Can. J. Hosp. Pharm. 2015, 68, 238. [Google Scholar] [CrossRef] [PubMed]
- Llinàs, A.; Glen, R.C.; Goodman, J.M. Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements? J. Chem. Inf. Model. 2008, 48, 1289–1303. [Google Scholar] [CrossRef]
- Adjei, A.; Newburger, J.; Martin, A. Extended Hildebrand approach: Solubility of caffeine in dioxane–water mixtures. J. Pharm. Sci. 1980, 69, 659–661. [Google Scholar] [CrossRef]
- Ochsner, A.B.; Belloto Jr, R.J.; Sokoloski, T.D. Prediction of xanthine solubilities using statistical techniques. J. Pharm. Sci. 1985, 74, 132–135. [Google Scholar] [CrossRef]
- Acree, W.E., Jr. Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim. Acta 1992, 198, 71–79. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T.J. Solubilization of drugs by cosolvents. Tech. Solubilization Drugs 1981, 12, 91–134. [Google Scholar]
- Xu, X.; Pinho, S.P.; Macedo, E.A. Activity coefficient and solubility of amino acids in water by the modified Wilson model. Ind. Eng. Chem. Res. 2004, 43, 3200–3204. [Google Scholar] [CrossRef]
- Khossravi, D.; Connors, K.A. Solvent effects on chemical processes, I: Solubility of aromatic and heterocyclic compounds in binary aqueous—Organic solvents. J. Pharm. Sci. 1992, 81, 371–379. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Shulgin, I. Solubility of drugs in aqueous solutions: Part 1. Ideal mixed solvent approximation. Int. J. Pharm. 2003, 258, 193–201. [Google Scholar] [CrossRef]
- Williams, N.; Amidon, G. Excess free energy approach to the estimation of solubility in mixed solvent systems III: Ethanol-propylene glycol-water mixtures. J. Pharm. Sci. 1984, 73, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Acree, W.E., Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J. Mol. Liq. 2018, 256, 541–547. [Google Scholar] [CrossRef]
- Taft, R.W.; Abboud, J.-L.M.; Kamlet, M.J.; Abraham, M.H. Linear solvation energy relations. J. Solut. Chem. 1985, 14, 153–186. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Doherty, R.M.; Abboud, J.-L.M.; Abraham, M.H.; Taft, R.W. Linear solvation energy relationships: 36. Molecular properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 1986, 75, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Hansn, C.M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Catalán, J. Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Martínez, F. Thermodynamic magnitudes of mixing and solvation of acetaminophen in ethanol+ water cosolvent mixtures. Rev. Acad. Colomb. Cienc. 2006, 30, 87–99. [Google Scholar] [CrossRef]
- Pourkarim, F.; Mirheydari, S.N.; Martinez, F.; Jouyban, A. Solubility of acetaminophen in 1-propanol+ water mixtures at T = 293.2–313.2 K. Phys. Chem. Liq. 2020, 58, 456–472. [Google Scholar] [CrossRef]
- Hojjati, H.; Rohani, S. Measurement and prediction of solubility of paracetamol in water− isopropanol solution. Part 1. Measurement and data analysis. Org. Process Res. Dev. 2006, 10, 1101–1109. [Google Scholar] [CrossRef]
- Ahumada, E.A.; Delgado, D.R.; Martínez, F. Solution thermodynamics of acetaminophen in some PEG 400+ water mixtures. Fluid Phase Equilibria 2012, 332, 120–127. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Martínez, F. Thermodynamic study of the solubility of acetaminophen in propylene glycol+ water cosolvent mixtures. J. Braz. Chem. Soc. 2006, 17, 125–134. [Google Scholar] [CrossRef]
- Soltanpour, S.; Jouyban, A. Solubility of acetaminophen and ibuprofen in polyethylene glycol 600, N-methyl pyrrolidone and water mixtures. J. Solut. Chem. 2011, 40, 2032–2045. [Google Scholar] [CrossRef]
- Muñoz, M.M.; Jouyban, A.; Martínez, F. Solubility and preferential solvation of acetaminophen in methanol+ water mixtures at 298.15 K. Phys. Chem. Liq. 2016, 54, 515–528. [Google Scholar] [CrossRef]
- Shakeel, F.; Alanazi, F.K.; Alsarra, I.A.; Haq, N. Solubilization behavior of paracetamol in Transcutol–water mixtures at (298.15 to 333.15) K. J. Chem. Eng. Data 2013, 58, 3551–3556. [Google Scholar] [CrossRef]
- Bustamante, P.; Romero, S.; Peña, A.; Escalera, B.; Reillo, A. Enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane–water. J. Pharm. Sci. 1998, 87, 1590–1596. [Google Scholar] [CrossRef]
- Rahimpour, E.; Agha, E.M.H.; Martinez, F.; Barzegar-Jalali, M.; Jouyban, A. Solubility study of acetaminophen in the mixtures of acetonitrile and water at different temperatures. J. Mol. Liq. 2021, 324, 114708. [Google Scholar] [CrossRef]
- Cysewski, P.; Jeliński, T.; Przybyłek, M.; Nowak, W.; Olczak, M. Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media. Pharmaceutics 2022, 14, 2828. [Google Scholar] [CrossRef]
- Soltanpour, S.; Jouyban, A. Solubility of acetaminophen and ibuprofen in polyethylene glycol 600, propylene glycol and water mixtures at 25 °C. J. Mol. Liq. 2010, 155, 80–84. [Google Scholar] [CrossRef]
- Jouyban, A.; Soltanpour, S.; Acree, W.E., Jr. Solubility of acetaminophen and ibuprofen in the mixtures of polyethylene glycol 200 or 400 with ethanol and water and the density of solute-free mixed solvents at 298.2 K. J. Chem. Eng. Data 2010, 55, 5252–5257. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Martínez, F. Temperature dependence of the solubility of acetaminophen in propylene glycol+ ethanol mixtures. J. Solut. Chem. 2006, 35, 335–352. [Google Scholar] [CrossRef]
- Bustamante, P.; Romero, S.; Reillo, A. Thermodynamics of paracetamol in amphiprotic and amphiprotic—Aprotic solvent mixtures. Pharm. Pharmacol. Commun. 1995, 1, 505–507. [Google Scholar]
- Marcus, Y. The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. J. Chem. Soc. Perkin Trans. 2 1994, 1751–1758. [Google Scholar] [CrossRef]
- Acree, W.E., Jr.; Grubbs, L.M.; Abraham, M.H. Prediction of Partition Coefficients and Permeability of Drug Molecules in Biological Systems with Abraham Model Solute Descriptors Derived from Measured Solubilities and Water-to-Organic Solvent Partition Coefficients; InTech: New York, NY, USA, 2012; pp. 100–102. [Google Scholar]
- Rahimpour, E.; Moradi, M.; Sheikhi-Sovari, A.; Rezaei, H.; Rezaei, H.; Jouyban-Gharamaleki, V.; Kuentz, M.; Jouyban, A. Comparative drug solubility studies using shake-flask versus a laser-based robotic method. AAPS PharmSciTech 2023, 24, 207. [Google Scholar] [CrossRef] [PubMed]
- Hatefi, A.; Jouyban, A.; Mohamadian, E.; Acree, W.E., Jr.; Rahimpour, E. Prediction of paracetamol solubility in cosolvency systems at different temperatures. J. Mol. Liq. 2019, 273, 282–291. [Google Scholar] [CrossRef]
No. | Solvent Mixtures | T (K) | MRDs (±SD)% | |
---|---|---|---|---|
Equation (1) | Equation (2) | |||
1 | Ethanol + water | 293.2 | 6.2 ± 7.1 | 4.9 ± 6.4 |
298.2 | 3.2 ± 2.8 | 1.6 ± 1.6 | ||
303.2 | 3.3 ± 3.0 | 2.0 ± 1.7 | ||
308.2 | 3.9 ± 3.3 | 1.4 ± 1.4 | ||
313.2 | 4.3 ± 4.7 | 4.2 ± 2.9 | ||
2 | PG + water | 293.2 | 2.3 ± 3.0 | 2.3 ± 3.0 |
298.2 | 2.3 ± 2.1 | 2.3 ± 2.1 | ||
303.2 | 1.9 ± 3.1 | 1.9 ± 3.1 | ||
308.2 | 2.3 ± 2.3 | 2.3 ± 2.3 | ||
313.2 | 3.3 ± 2.6 | 3.3 ± 2.5 | ||
3 | Methanol + water | 298.2 | 0.6 ± 0.5 | 0.6 ± 0.4 |
4 | 1,4-Dioxane + water | 293.2 | 13.8 ± 13.1 | 10.9 ± 9.0 |
298.2 | 7.9 ± 9.0 | 6.1 ± 4.7 | ||
303.2 | 8.1 ± 6.9 | 5.9 ± 3.9 | ||
308.2 | 9.7 ± 8.7 | 6.9 ± 6.4 | ||
313.2 | 11.3 ± 9.5 | 8.6 ± 7.6 | ||
5 | 1-Propanol + water | 293.2 | 7.9 ± 6.1 | 8.1 ± 5.0 |
298.2 | 4.0 ± 4.0 | 3.3 ± 2.2 | ||
303.2 | 3.6 ± 3.0 | 0.7 ± 0.9 | ||
308.2 | 6.8 ± 5.6 | 6.6 ± 3.6 | ||
313.2 | 7.6 ± 6.6 | 7.2 ± 4.7 | ||
6 | Acetonitrile + water | 293.2 | 11.6 ± 19.0 | 5.3 ± 10.2 |
298.2 | 10.4 ± 13.6 | 3.0 ± 5.9 | ||
303.2 | 9.1 ± 8.6 | 2.3 ± 2.4 | ||
308.2 | 8.5 ± 6.3 | 3.6 ± 3.9 | ||
313.2 | 8.1 ± 7.4 | 5.5 ± 6.5 | ||
7 | DMSO + water | 298.2 | 12.8 ± 16.7 | 11.6 ± 15.2 |
303.2 | 6.0 ± 6.5 | 3.8 ± 4.5 | ||
308.2 | 5.3 ± 5.8 | 3.1 ± 4.2 | ||
313.2 | 10.4 ± 12.3 | 10.1 ± 11.8 | ||
8 | DMF + water | 298.2 | 8.3 ± 9.6 | 5.7 ± 8.1 |
303.2 | 4.9 ± 6.4 | 1.9 ± 2.5 | ||
308.2 | 4.9 ± 4.3 | 1.7 ± 2.3 | ||
313.2 | 6.8 ± 7.6 | 5.3 ± 7.2 | ||
9 | 2-Propanol + water | 293.2 | 8.7 ± 7.3 | 9.0 ± 7.0 |
298.2 | 5.5 ± 4.4 | 5.2 ± 4.8 | ||
303.2 | 2.6 ± 2.4 | 1.8 ± 1.5 | ||
308.2 | 4.7 ± 4.3 | 4.3 ± 3.3 | ||
313.2 | 9.2 ± 6.5 | 9.0 ± 6.1 |
No. | Solvent Mixtures | T (K) | MRDs (±SD)% | |
---|---|---|---|---|
Equation (5) | Equation (7) | |||
1 | Ethanol + water | 293.2 | 21.8 ± 24.2 | 7.2 ± 6.7 |
298.2 | 15.7 ± 14.1 | 4.0 ± 3.8 | ||
303.2 | 14.5 ± 12.7 | 3.9 ± 4.2 | ||
308.2 | 14.6 ± 13.4 | 4.5 ± 4.2 | ||
313.2 | 9.8 ± 12.1 | 3.9 ± 4.2 | ||
2 | PG + water | 293.2 | 139.0 ± 112.4 | 10.9 ± 10.1 |
298.2 | 125.9 ± 100.9 | 9.7 ± 6.8 | ||
303.2 | 125.5 ± 99.2 | 6.6 ± 5.7 | ||
308.2 | 122.4 ± 94.5 | 7.2 ± 7.2 | ||
313.2 | 126.3 ± 97.7 | 4.5 ± 8.8 | ||
3 | Methanol + water | 298.2 | 56.4 ± 51.2 | 17.9 ± 14.2 |
4 | 1,4-Dioxane + water | 293.2 | 8.8 ± 6.4 | 20.2 ± 16.4 |
298.2 | 10.4 ± 7.8 | 13.5 ± 11.7 | ||
303.2 | 11.8 ± 9.7 | 11.3 ± 12.1 | ||
308.2 | 15.2 ± 13.7 | 11.4 ± 11.4 | ||
313.2 | 16.7 ± 14.5 | 12.6 ± 11.7 | ||
5 | 1-Propanol + water | 293.2 | 14.3 ± 12.2 | 18.7 ± 17.1 |
298.2 | 16.6 ± 14.5 | 17.1 ± 14.4 | ||
303.2 | 19.9 ± 17.4 | 16.8 ± 12.8 | ||
308.2 | 28.2 ± 19.7 | 16.2 ± 11.3 | ||
313.2 | 28.3 ± 18.9 | 14.8 ± 10.4 | ||
6 | Acetonitrile + water | 293.2 | 43.8 ± 25.9 | 11.8 ± 19.7 |
298.2 | 41.7 ± 26.1 | 10.6 ± 14.1 | ||
303.2 | 39.8 ± 27.6 | 9.0 ± 8.9 | ||
308.2 | 39.3 ± 27.0 | 8.1 ± 6.9 | ||
313.2 | 41.9 ± 26.2 | 7.8 ± 7.0 | ||
7 | DMSO + water | 298.2 | 32.8 ± 29.2 | 9.4 ± 10.1 |
303.2 | 34.6 ± 31.3 | 8.2 ± 10.8 | ||
308.2 | 36.1 ± 33.1 | 11.6 ± 14.4 | ||
313.2 | 37.2 ± 35.1 | 16.3 ± 18.5 | ||
8 | DMF + water | 298.2 | 34.4 ± 31.7 | 7.5 ± 8.1 |
303.2 | 35.2 ± 32.5 | 5.4 ± 5.2 | ||
308.2 | 35.9 ± 33.5 | 5.4 ± 5.2 | ||
313.2 | 36.8 ± 34.4 | 7.9 ± 8.1 | ||
9 | 2-Propanol + water | 293.2 | 11.6 ± 9.5 | 13.5 ± 10.9 |
298.2 | 7.8 ± 7.3 | 10.2 ± 7.7 | ||
303.2 | 4.3 ± 3.8 | 5.6 ± 4.1 | ||
308.2 | 4.9 ± 3.9 | 3.4 ± 4.8 | ||
313.2 | 8.0 ± 6.4 | 7.1 ± 5.5 | ||
Overall | 37.6 ± 54.2 | 10.0 ± 10.8 |
No. | Solvent Mixtures | T (K) | MRDs (±SD)% | |
---|---|---|---|---|
Equation (5) | Equation (7) | |||
1 | Ethanol + water | 293.2 | 27.4 ± 30.0 | 8.3 ± 6.8 |
298.2 | 20.7 ± 18.9 | 5.1 ± 5.2 | ||
303.2 | 19.2 ± 17.3 | 4.8 ± 5.7 | ||
308.2 | 19.3 ± 18.0 | 5.3 ± 5.5 | ||
313.2 | 14.2 ± 16.4 | 4.4 ± 4.0 | ||
2 | PG + water | 293.2 | 193.7 ± 154.9 | 162.4 ± 199.6 |
298.2 | 176.2 ± 139.5 | 147.8 ± 179.4 | ||
303.2 | 175.0 ± 170.0 | 138.8 ± 164.5 | ||
308.2 | 170.0 ± 130.4 | 137.5 ± 164.9 | ||
313.2 | 174.1 ± 133.9 | 138.9 ± 166.1 | ||
3 | Methanol + water | 298.2 | 60.9 ± 55.1 | 82.5 ± 91.2 |
4 | 1,4-Dioxane + water | 293.2 | 38.2 ± 34.3 | 160.8 ± 190.8 |
298.2 | 40.5 ± 34.3 | 141.5 ± 169.6 | ||
303.2 | 41.0 ± 34.8 | 132.3 ± 165.7 | ||
308.2 | 42.8 ± 35.1 | 117.0 ± 142.0 | ||
313.2 | 43.4 ± 35.0 | 111.2 ± 132.3 | ||
5 | 1-Propanol + water | 293.2 | 17.8 ± 16.2 | 26.2 ± 21.8 |
298.2 | 20.9 ± 19.9 | 25.6 ± 19.2 | ||
303.2 | 24.3 ± 21.1 | 25.6 ± 18.0 | ||
308.2 | 32.8 ± 23.6 | 25.6 ± 17.0 | ||
313.2 | 32.8 ± 22.6 | 24.2 ± 16.1 | ||
6 | Acetonitrile + water | 293.2 | 50.1 ± 29.4 | 1.4 × 108 ± 3.5 × 108 |
298.2 | 48.1 ± 29.9 | 1.1 × 108 ± 2.7 × 108 | ||
303.2 | 46.1 ± 31.6 | 8.4 × 107 ± 1.4 × 108 | ||
308.2 | 45.8 ± 31.1 | 6.0 × 107 ± 1.4 × 108 | ||
313.2 | 48.1 ± 30.0 | 4.2 × 107 ± 1.0 × 108 | ||
7 | DMSO + water | 298.2 | 34.7 ± 30.8 | 72.4 ± 92.7 |
303.2 | 36.4 ± 32.6 | 70.6 ± 90.1 | ||
308.2 | 36.4 ± 32.6 | 68.4 ± 87.3 | ||
313.2 | 37.7 ± 34.2 | 65.0 ± 82.4 | ||
8 | DMF + water | 298.2 | 36.0 ± 32.9 | 118.5 ± 215.7 |
303.2 | 36.7 ± 33.7 | 116.8 ± 210.8 | ||
308.2 | 37.3 ± 34.5 | 114.1 ± 202.8 | ||
313.2 | 38.1 ± 35.4 | 112.5 ± 197.8 | ||
9 | 2-Propanol + water | 293.2 | 12.1 ± 10.2 | 36.5 ± 32.1 |
298.2 | 8.5 ± 7.9 | 32.5 ± 26.7 | ||
303.2 | 4.9 ± 4.3 | 26.7 ± 20.6 | ||
308.2 | 5.2 ± 4.1 | 22.6 ± 17.2 | ||
313.2 | 8.1 ± 4.1 | 18.2 ± 15.0 | ||
Overall | 50.1 | 1.1 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimpour, E.; Jouyban, A. Prediction of Paracetamol Solubility in Binary Solvents Using Reichardt’s Polarity Parameter Combined Model. Liquids 2023, 3, 512-521. https://doi.org/10.3390/liquids3040032
Rahimpour E, Jouyban A. Prediction of Paracetamol Solubility in Binary Solvents Using Reichardt’s Polarity Parameter Combined Model. Liquids. 2023; 3(4):512-521. https://doi.org/10.3390/liquids3040032
Chicago/Turabian StyleRahimpour, Elaheh, and Abolghasem Jouyban. 2023. "Prediction of Paracetamol Solubility in Binary Solvents Using Reichardt’s Polarity Parameter Combined Model" Liquids 3, no. 4: 512-521. https://doi.org/10.3390/liquids3040032
APA StyleRahimpour, E., & Jouyban, A. (2023). Prediction of Paracetamol Solubility in Binary Solvents Using Reichardt’s Polarity Parameter Combined Model. Liquids, 3(4), 512-521. https://doi.org/10.3390/liquids3040032