Previous Issue
Volume 4, June
 
 

Micro, Volume 4, Issue 3 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 4714 KiB  
Article
Observation of the Transition Phenomenon of High-Density Cell Distribution in a Two-Dimensional Microspace of the Unicellular Green Alga Chlamydomonas reinhardtii
by Yuka Goda, Kyohei Yamashita, Tetsuo Aono, Kentaro Aizawa, Masafumi Hashimoto and Eiji Tokunaga
Micro 2024, 4(3), 412-425; https://doi.org/10.3390/micro4030026 - 28 Jun 2024
Viewed by 272
Abstract
Understanding the spatial distribution (SD) of unicellular organisms is crucial for comprehending population dynamics and adaptive strategies at the microbial scale. These behaviors include the formation of ordered structures through intercellular interactions and the broader implications for ecosystem interactions. In this study, the [...] Read more.
Understanding the spatial distribution (SD) of unicellular organisms is crucial for comprehending population dynamics and adaptive strategies at the microbial scale. These behaviors include the formation of ordered structures through intercellular interactions and the broader implications for ecosystem interactions. In this study, the spatial distribution of the motile unicellular alga Chlamydomonas reinhardtii was investigated, with a focus on high-density conditions approximated by an area fraction of φ = 10%. Cell counting was carried out by image analysis, which applies the quasi-two-dimensional observation technique developed in our previous studies to analyze cell interactions in microspaces with thicknesses of 80 µm and 200 µm using both variance-to-mean ratio (VMR) and Eberhardt statistics (ES). The study reveals that experimental results, when evaluated using both VMR and ES, confirmed a similar trend and a density-dependent transition in cellular interaction. This transition ranges from swarming at lower densities to dispersal at higher densities, with a critical boundary observed at approximately φ = 8%. The findings suggest that cell behavior in dense populations shifts due to limited space and resources, offering a new perspective on the adaptive strategies of cells. These insights could enhance understanding of the mechanisms governing cell behavior in crowded environments. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

11 pages, 5666 KiB  
Article
Preparation of Antimony Tin Oxide Thin Film Using Green Synthesized Nanoparticles by E-Beam Technique for NO2 Gas Sensing
by Chaitra Chandraiah, Hullekere Mahadevaiah Kalpana, Challaghatta Muniyappa Ananda and Madhusudan B. Kulkarni
Micro 2024, 4(3), 401-411; https://doi.org/10.3390/micro4030025 - 21 Jun 2024
Viewed by 372
Abstract
This work delves into the preparation of ATO thin films and their characterization, fabrication, and calibration of a NO2 gas sensor, as well as the development of the packaged sensor. ATO thin films were prepared by e-beam evaporation using green synthesized ATO [...] Read more.
This work delves into the preparation of ATO thin films and their characterization, fabrication, and calibration of a NO2 gas sensor, as well as the development of the packaged sensor. ATO thin films were prepared by e-beam evaporation using green synthesized ATO nanomaterials on different substrates and annealed at 500 and 600 °C for one hour. The structural and morphological properties of the developed thin films were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. An orthorhombic SnO2 crystal structure was recognized through XRD analysis. The granular-shaped nanoparticles were revealed through SEM and TEM images. The films annealed at 600 °C exhibited improved crystallinity. ATO films prepared on normal 5 µm interdigitated electrodes (IDEs) and annealed at 600 °C exhibited a response of 10.31 ± 0.25 with an optimum temperature of 200 °C for a 4.8 ppm NO2 gas concentration. The packaged NO2 gas sensor developed using IDEs with a microheater demonstrated an improved response of 16.20 ± 0.25 for 4.8 ppm of NO2 gas. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
Show Figures

Figure 1

Previous Issue
Back to TopTop