A Review of a Decade of Local Projects, Studies and Initiatives of Atypical Influxes of Pelagic Sargassum on Mexican Caribbean Coasts
Abstract
:1. Introduction
- Will this phenomenon be the new normal within the Mexican Caribbean?
- Will the phenomenon increase further in the future?
- What are the factors that have contributed to massive growth in recent years?
- Is this phenomenon related to climate change?
- What are the main factors that determine population dynamics?
- What factors contribute, control and determine spatial distribution?
- Is it possible to manage this phenomenon?
- What actions can be done locally to mitigate impacts before and after Sargassum arrives at the coasts?
- Which are the best strategies to collect Sargassum along the coast without environmental and ecological effects?
- What is the Sargassum elemental content variation in space and time?
- How could Sargassum be sustainably used as an economically valuable resource, help in its immediate remotion?
- What is the potential of Sargassum as raw material?
- How much Sargassum will arrive, when and where?
2. Methods
2.1. State of the Art
2.2. Characteristics of the Heuristic Phase
2.3. Characteristics of the Hermeneutic Phase
3. Results
3.1. Findings on the Mexican Government Strategy to Address the Phenomenon
3.2. Findings on Knowledge Generation
3.2.1. Origin and Ecological Importance
3.2.2. Monitoring, Modeling and Early Warning
3.2.3. Socioeconomic and Environmental Impacts
3.2.4. Containment, Harvest and Disposal
3.2.5. Potential Uses
Agriculture Industry and Livestock Goods
Chemistry, Pharmaceutics and Nutritional Supplements
Ecomaterials
Livestock Feed
Bioenergetics
Advanced Materials
Bioremediation and Purification Mechanisms
3.2.6. Regulations and Other Strategic Lines
3.3. Findings on Key Experts and Multisectoral and Interinstitutional Collaboration
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gower, J.; King, S. Seaweed, seaweed everywhere. Science 2019, 365, 27. [Google Scholar] [CrossRef] [PubMed]
- Pendleton, L.; Krowicki, F.; Strosser, P.; Hallett-Murdoch, J. Assessing the Economic Contribution of Marine and Coastal Ecosystem Services in the Sargasso Sea; Report 14-05; Nicholas Institute for Environmental Policy Solutions: Durham, NC, USA, 2014; 47p. [Google Scholar]
- Rodríguez-Martínez, R.E.; van Tussenbroek, B.; Jordán-Dahlgren, E. Afluencia masiva de sargazo pelágico a la costa del Caribe Mexicano (2014–2015). In Florecimientos Algales Nocivos en México; CICESE: Ensenada, Mexico, 2016. [Google Scholar]
- Martínez-González, G. Sargazo: La irrupción atípica de un ecosistema milenario. Salud Pública México 2019, 61, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Laffoley, D.D.A.; Roe, H.S.; Angel, M.V.; Ardron, J.; Bates, N.R.; Boyd, I.L.; Brooke, S.; Buck, K.N.; Carlson, C.A.; Causey, B.; et al. The Protection and Management of the Sargasso Sea: The Golden Floating Rainforest of the Atlantic Ocean. Summary Science and Supporting Evidence Case; Sargasso Sea Alliance: Washington DC, USA, 2011; 44p. [Google Scholar]
- Convention on Biological Diversity. Report of the Wider Caribbean and Western Mid-Atlantic Regional Workshop to Facilitate the Description of Ecologically or Biologically Significant Marine Areas; UNEP/CBD/SBSTTA/16/INF/7; CBD: Montreal, QC, Canada, 2012; 241p. [Google Scholar]
- Hamilton Declaration. Hamilton Declaration on Collaboration for the Conservation of the Sargasso; Sargasso Sea Commission: Hamilton, Bermudas, 2014; 12p. [Google Scholar]
- Gower, J.; Young, E.; King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 2013, 4, 764–773. [Google Scholar] [CrossRef]
- Sankare, Y.; Komoe, K.; Aka, K.-S.; Fofie, N.B.-Y.; Bamba, A. Répartition et abondance des sargasses Sargassum natans et Sargassum fluitans (Sargassaceae, Fucales) dans les eaux marines ivoiriennes (Afrique de l’Ouest). Int. J. Biol. Chem. Sci. 2016, 10, 1853–1864. [Google Scholar] [CrossRef] [Green Version]
- Stoner, A.W. Pelagic Sargassum: Evidence for a major decrease in biomass. Deep Sea Res. Part A Oceanogr. Res. Pap. 1983, 30, 469–474. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef]
- Van Tussenbroek, B.I.; Arana, H.A.H.; Rodríguez-Martínez, R.E.; Espinoza-Avalos, J.; Canizales-Flores, H.M.; González-Godoy, C.E.; Barba-Santos, M.G.; Vega-Zepeda, A.; Collado-Vides, L. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 2017, 122, 272–281. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; Medina-Valmaseda, A.E.; Blanchon, P.; Monroy-Velázquez, L.V.; Almazán-Becerril, A.; Delgado-Pech, B.; Vásquez-Yeomans, L.; Francisco, V.; García-Rivas, M.C. Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar. Pollut. Bull. 2019, 146, 201–205. [Google Scholar] [CrossRef]
- Casas-Beltrán, D.A.; Gallaher, C.M.; Hernández-Yac, E.; Febles-Moreno, K.; Voglesonger, K.; Leal-Bautista, R.M.; Lenczewski, M. Seaweed invasion! Temporal changes in beach conditions lead to increasing cenote usage and contamination in the Riviera Maya. Sustainability 2020, 12, 2474. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Olivier, J.A.; Canepa, J.R.; Zarate, D.G.; Díaz, A.G.; Jaramillo, D.A.; García, H.K.; López, B.E. Bioenergetic valorization of Sargassum fluitans in the Mexican Caribbean: The determination of the calorific value and washing mechanism. AIMS Energy 2022, 10, 45–63. [Google Scholar] [CrossRef]
- González-Cano, J. Plausible scenarios of sargassum (Sargassum spp.) population base on satellite-detection and beaching indices. In Proceedings of the International Sargassum Conference, Guadeloupe Island, France, 23–26 October 2019. [Google Scholar]
- Estrada-Villalba, É.E.; Azocar, A.L.S.M.; Jacques-García, F.A. State of the art on immersive virtual reality and its use in developing meaningful empathy. Comput. Electr. Eng. 2021, 93, 107272. [Google Scholar] [CrossRef]
- Londoño-Palacio, O.L.; Maldonado-Granados, L.F.; Calderón-Villafáñez, L.C. Guías para construir estados del arte. Int. Corp. Netw. Knowl. 2014, 5, 39. [Google Scholar]
- Gobierno del Estado de Quintana Roo. El Gobierno de Quintana Roo invertirá otros 240 Millones de Pesos para la Estrategia de Atención del Sargazo. 2018. Available online: https://qroo.gob.mx/sargazo/el-gobierno-de-quintana-roo-invertira-otros-240-millones-de-pesos-para-estrategia-de (accessed on 16 February 2022).
- La Jornada. Aplicarán Impuesto de Saneamiento Ambiental a los Hoteles de Cancún. 2018. Available online: https://www.jornada.com.mx/2018/12/06/estados/030n2est (accessed on 21 January 2022).
- SEMAR. La Secretaría de Marina-Armada de México Mantiene Acciones para la Contención del Fenómeno Atípico del Sargazo en el Estado de Quintana Roo. 2021. Available online: https://www.gob.mx/semar/prensa/la-secretaria-de-marina-armada-de-mexico-mantiene-acciones-para-la-contencion-del-fenomeno-atipico-del-sargazo-en-el-estado-de-quintana-roo (accessed on 10 October 2021).
- CONACYT. Agenda de Ciencia, Tecnología e Innovación para la Atención, Adaptación y Mitigación del arribo de sargazo pelágico a México; Mexican Government Document; CONACYT: Mexico City, Mexico, 2019; 32p.
- Johns, E.M.; Lumpkin, R.; Putman, N.F.; Smith, R.H.; Muller-Karger, F.E.; Rueda-Roa, D.T.; Hu, C.; Wang, M.; Brooks, M.T.; Gramer, L.J.; et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: Biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 2020, 182, 102269. [Google Scholar] [CrossRef]
- Torralba, M.G.; Franks, J.S.; Gomez, A.; Yooseph, S.; Nelson, K.E.; Grimes, D.J. Effect of macondo prospect 252 oil on microbiota associated with pelagic Sargassum in the northern Gulf of Mexico. Microbiol. Ecol. 2017, 73, 91–100. [Google Scholar] [CrossRef]
- González-Nieto, D.; Oliveira, M.C.; Resendiz, M.L.N.; Dreckmann, K.M.; Mateo-Cid, L.E.; Senties, A. Molecular assessment of the genus Sargassum (Fucales, Phaeophyceae) from the Mexican coasts of the Gulf of Mexico and Caribbean, with the description of S. xochitlae sp. Phytotaxa 2020, 461, 254–274. [Google Scholar] [CrossRef]
- Vázquez-Delfín, E.; Freile-Pelegrín, Y.; Salazar-Garibay, A.; Serviere-Zaragoza, E.; Méndez-Rodríguez, L.C.; Robledo, D. Species composition and chemical characterization of Sargassum influx at six different locations along the Mexican Caribbean coast. Sci. Total Environ. 2021, 795, 148852. [Google Scholar] [CrossRef]
- Baker, P.; Minzlaff, U.; Schoenle, A.; Schwabe, E.; Hohlfeld, M.; Jeuck, A.; Brenke, N.; Prausse, D.; Rothenbeck, M.; Brix, S.; et al. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 148, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Gouvêa, L.P.; Assis, J.; Gurgel, C.F.; Serrão, E.A.; Silveira, T.C.; Santos, R.; Duarte, C.M.; Peres, L.M.; Carvalho, V.F.; Batista, M.; et al. Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Sci. Total Environ. 2020, 729, 138745. [Google Scholar] [CrossRef]
- Powers, L.C.; Hertkorn, N.; McDonald, N.; Schmitt-Kopplin, P.; Del Vecchio, R.; Blough, N.V.; Gonsior, M. Sargassum sp. act as a large regional source of marine dissolved organic carbon and polyphenols. Glob. Biogeochem. Cycles 2019, 33, 1423–1439. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, L.; Sheinbaum-Pardo, J. Sargazo en Movimiento. In Revista de la Academia Mexicana de Ciencias; Aldana-Aranda, D., Ed.; México ante el sargazo. 2020, Volume 71, pp. 20–28. Available online: https://www.revistaciencia.amc.edu.mx/images/revista/71_4/PDF/06_71_4_1287_SargazoFMovimiento.pdf (accessed on 30 May 2022).
- Jouanno, J.; Moquet, J.S.; Berline, L.; Radenac, M.H.; Santini, W.; Changeux, T.; Thibaut, T.; Podlejski, W.; Ménard, F.; Martinez, J.M.; et al. Evolution of the riverine nutrient export to the Tropical Atlantic over the last 15 years: Is there a link with Sargassum proliferation? Environ. Res. Lett. 2021, 16, 034042. [Google Scholar] [CrossRef]
- García-Sánchez, M.; Graham, C.; Vera, E.; Escalante-Mancera, E.; Álvarez-Filip, L.; van Tussenbroek, B.I. Temporal changes in the composition and biomass of beached pelagic Sargassum species in the Mexican Caribbean. Aquat. Bot. 2020, 167, 103275. [Google Scholar] [CrossRef]
- Paraguay-Delgado, F.; Carreño-Gallardo, C.; Estrada-Guel, I.; Zabala-Arceo, A.; Martinez-Rodriguez, H.A.; Lardizábal-Gutierrez, D. Pelagic Sargassum spp. capture CO2 and produce calcite. Environ. Sci. Pollut. Res. 2020, 27, 25794–25800. [Google Scholar] [CrossRef]
- Salter, M.A.; Rodríguez-Martínez, R.E.; Álvarez-Filip, L.; Jordán-Dahlgren, E.; Perry, C.T. Pelagic Sargassum as an emerging vector of high-rate carbonate sediment import to tropical Atlantic coastlines. Glob. Planet. Change 2019, 195, 103332. [Google Scholar] [CrossRef]
- Mendoza-Becerril, M.A.; Serviere-Zaragoza, E.; Mazariegos-Villarreal, A.; Rivera-Perez, C.; Calder, D.R.; Vázquez-Delfín, E.F.; Freile-Pelegrín, Y.; Agüero, J.; Robledo, D. Epibiont hydroids on beachcast Sargassum in the Mexican Caribbean. PeerJ 2020, 8, e9795. [Google Scholar] [CrossRef]
- Monroy-Velázquez, L.V.; Rodríguez-Martínez, R.E.; van Tussenbroek, B.I.; Aguiar, T.; Solis-Weiss, V.; Briones-Fourzán, P. Motile macrofauna associated with pelagic Sargassum in a Mexican reef lagoon. J. Environ. Manag. 2019, 252, 109650. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Hardy, R.F.; Hochberg, E.J. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae. Remote Sens. Environ. 2015, 167, 229–246. [Google Scholar] [CrossRef]
- Duffy, J.E.; Benedetti-Cecchi, L.; Trinanes, J.; Muller-Karger, F.E.; Ambo-Rappe, R.; Boström, C.; Buschmann, A.H.; Byrnes, J.; Coles, R.G.; Creed, J.; et al. Toward a coordinated global observing system for seagrasses and marine macroalgae. Front. Mar. Sci. 2019, 6, 317. [Google Scholar] [CrossRef] [Green Version]
- Sheinbaum-Pardo, J. Sargazo en Movimiento: Retos y Perspectivas para su Modelación. Seminario-Taller Online Nacional Sobre Teledetección, Monitoreo, Pronóstico y Alerta Temprana del Sargazo Pelágico que Arriba a las Costas Mexicanas: Descubriendo Sinergias y Construyendo Puentes Hacia un Sistema Integral y Regional; CONACYT: Mexico City, Mexico, 2021.
- Qi, J.; Chen, C.; Beardsley, R.C. FVCOM one-way and two-way nesting using ESMF: Development and validation. Ocean Model. 2018, 124, 94–110. [Google Scholar] [CrossRef] [Green Version]
- Uribe-Martínez, A.; Guzmán-Ramírez, A.; Arreguín-Sánchez, F.; Cuevas, E. El sargazo en el Caribe Mexicano, revisión de una historia impensable. In Gobernanza y Manejo de las Costas y Mares ante la Incertidumbre. Una Guía para Tomadores de Decisiones; Rivera-Arriaga, E., Azuz-Adeath, I.O., Cervantes Rosas, D., Espinoza-Tenorio, A., Silva Casarín, R., Ortega-Rubio, A., Botello, A.V., y Vega-Serratos, B.E., Eds.; Universidad Autónoma de Campeche, Ricomar: Campeche, Mexico, 2020; 894p. [Google Scholar]
- Gower, J.; King, S. The distribution of pelagic Sargassum observed with OLCI. Int. J. Remote Sens. 2020, 41, 5669–5679. [Google Scholar] [CrossRef]
- Arellano-Verdejo, J.; Lazcano-Hernández, H.E.; Cabanillas-Terán, N. ERISNet: Deep neural network for Sargassum detection along the coastline of the Mexican Caribbean. PeerJ Comput. Sci. 2019, 7, e6842. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, E.; Uribe-Martínez, A.; Liceaga-Correa, M.A. A satellite remote-sensing multi-index approach to discriminate pelagic Sargassum in the waters of the Yucatan Peninsula, Mexico. Int. J. Remote Sens. 2018, 39, 3608–3627. [Google Scholar] [CrossRef]
- Gómez-Rodríguez, G. Monitoreo del sargazo en el Laboratorio Nacional de Observación de la Tierra. Seminario-Taller Online Nacional Sobre Teledetección, Monitoreo, Pronóstico y Alerta Temprana del Sargazo Pelágico que Arriba a las Costas Mexicanas: Descubriendo Sinergias y Construyendo Puentes Hacia un Sistema Integral y Regional; CONACYT: Mexico City, Mexico, 2021.
- Allende-Arandía, M.E.; Caracterización Lagrangiana de la ruta del Sargazo Mediante una Comparación Climatológica de las Estructuras Coherentes Lagrangianas y los Mapas Auto-Organizados. Seminario Online Interinstitucional de Oceanografía Física de la RIOF. June 2021. Available online: https://www.youtube.com/watch?v=6ZnAR7byltM (accessed on 21 July 2021).
- Lara-Hernández, J.; Zavala-Hidalgo, J. Dinámica de Transporte de Sargazo Pelágico en las Cercanías del Caribe Mexicano: Análisis de Sensibilidad. Seminario-Taller Online Nacional Sobre Teledetección, Monitoreo, Pronóstico y Alerta Temprana del Sargazo Pelágico que Arriba a las Costas Mexicanas: Descubriendo Sinergias y Construyendo Puentes Hacia un Sistema Integral y Regional; CONACYT: Mexico City, Mexico, 2021.
- Jouanno, J.; Benshila, R.; Berline, L.; Soulié, A.; Radenac, M.H.; Morvan, G.; Diaz, F.; Sheinbaum, J.; Chevalier, C.; Thibaut, T.; et al. A NEMO-based model of Sargassum distribution in the Tropical Atlantic: Description of the model and sensitivity analysis (NEMO-Sarg1. 0). Geosci. Model Dev. 2021, 14, 4069–4086. [Google Scholar] [CrossRef]
- Flores-Vidal, X. Sistema de Monitoreo en Tiempo-Real de Corrientes Marinas y Presencia de Sargazo en el Caribe Mexicano. Seminario-Taller Online Nacional Sobre Teledetección, Monitoreo, Pronóstico y Alerta Temprana del Sargazo Pelágico que Arriba a las Costas Mexicanas: Descubriendo Sinergias y Construyendo Puentes Hacia un Sistema Integral y Regional; CONACYT: Mexico City, Mexico, 2021.
- González-Cano, J. Arreguín-Sánchez. Pronóstico de la Biomasa de Sargazo en el año 2021 en una Porción de la zona del Atlántico Centro Occidental. Manuscript in preparation. 2021.
- Arellano-Verdejo, J.; Lazcano-Hernández, H.E. Crowdsourcing for Sargassum Monitoring Along the Beaches in Quintana Roo. In Proceedings of the GIS LATAM Conference, Mexico City, Mexico, 28–30 September 2020; Springer: Cham, Switzerland, 2020; pp. 49–62. [Google Scholar]
- Arellano-Verdejo, J.; Lazcano-Hernández, H.E. Collective view: Mapping Sargassum distribution along beaches. PeerJ Comput. Sci. 2021, 7, e528. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, A.L.; Li-Ng, J.J. El riesgo del sargazo para la economía y turismo de Quintana Roo y México. BBVA Res. 2020, 20, 34. [Google Scholar]
- Ramlogan, N.R.; McConney, P.; Oxenford, H.A. Socio-Economic Impacts of Sargassum Influx Events on the Fishery Sector of Barbados; Technical Report No 81; Centre for Resource Management and Environmental Studies (CERMES): The University of the West Indies, Cave Hill Campus: Wanstead, Barbados, 2017; 86p. [Google Scholar]
- Resiere, D.; Mehdaoui, H.; Florentin, J.; Gueye, P.; Lebrun, T.; Blateau, A.; Viguier, J.; Valentino, R.; Brouste, Y.; Kallel, H.; et al. Sargassum seaweed health menace in the Caribbean: Clinical characteristics of a population exposed to hydrogen sulfide during the 2018 massive stranding. Clin. Toxicol. 2021, 59, 215–223. [Google Scholar] [CrossRef]
- Michotey, V.; Blanfuné, A.; Chevalier, C.; Garel, M.; Diaz, F.; Berline, L.; Le Grand, L.; Armougom, F.; Guasco, S.; Ruitton, S.; et al. In situ observations and modelling revealed environmental factors favoring occurrence of Vibrio in microbiome of the pelagic Sargassum responsible for strandings. Sci. Total Environ. 2020, 748, 141216. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, R.E.; van Tussenbroek, B. El sargazo en los pastos marinos y arrecifes. Rev. Acad. Mex. Cienc. 2020, 71, 28–33. [Google Scholar]
- Aguirre-Muñoz, A. El Sargazo en el Caribe Mexicano: De la Negación y el Voluntarismo a la Realidad. 2019. Available online: http://marfund.org/en/wp-content/uploads/2015/09/Aguirre-Munoz-2019-El-sargazo-en-el-Car-ibe-Negaci%C3%B3n-voluntarismo-y-realidad-1.pdf (accessed on 24 October 2021).
- Hernández-Terrones, L.M. Impacto del sargazo en el acuífero. Rev. Acad. Mex. Cienc. 2020, 71, 42–45. [Google Scholar]
- Cuevas-Zimbrón, E. Pesquería de la raya pinta Aetobatus narinari en el Sureste del Golfo de México: Tasas de Captura y Estructura Poblacional. Master’s Thesis, El Colegio de la Frontera Sur, Campeche, Mexico, 2010. [Google Scholar]
- Saldaña Fabela, P.; Izurieta Dávila, J.; Gómez Balandra, A.; Martínez Jiménez, M.; Bravo Inclán, L.; Vázquez Bustos, C.; Huerto Delgadillo, R. Diagnóstico de Calidad del Agua y Caracterización de las dos Especies de Sargazo que Arriban a las Costas de Cancún, Puerto Morelos y Playa del Carmen; IMTA-SEMARNAT: Jiutepec, Morelos, Mexico, 2019; 64p. [Google Scholar]
- Islas-Madrid, N.L. Indicadores de Estrés Oxidativo de la Población de Tortuga Blanca (Chelonia mydas) que Habita en el Caribe Mexicano. Master’s Thesis, Centro de Investigaciones Biológicas del Noroeste SC, Baja California Sur, La Paz, Mexico, 2020. [Google Scholar]
- Rodríguez-Soto, K.F. Efecto de la Acumulación de Sargazo en Anidación, Eclosión y Sobrevivencia de Tortugas Marinas de Quintana Roo. Bachelor’s Thesis, Universidad de Querétaro, Querétaro, Mexico, 2020. [Google Scholar]
- Álvarez-Filip, L.; Estrada-Saldívar, N.; Pérez-Cervantes, E.; Molina-Hernández, A.; González-Barrios, F.J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 2019, 7, e8069. [Google Scholar] [CrossRef] [Green Version]
- Cabanillas-Terán, N.; Hernández-Arana, H.A.; Ruiz-Zárate, M.Á.; Vega-Zepeda, A.; Sánchez-González, A. Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 2019, 7, e7589. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Posada, I.; Cabanillas-Terán, N.; Martínez-Juárez, L.F.; Yanez-Montalvo, A.F. El Sargazo Pelágico Modifica los Grupos Morfofuncionales Algales de las Comunidades Bentónicas del sur de Quintana Roo; X Congreso Mexicano de Arrecifes coralinos: Manzanillo, Colima, 2019. [Google Scholar]
- Murillo-García, M. Proyecto de Recolección de Sargazo en las Costas del Caribe Mexicano. Diseño y Evaluación. Master’s Thesis, UNAM, Mexico City, Mexico, 2017. [Google Scholar]
- Torres-Beristain, B. El sargazo en las costas mexicanas. Cienc. Hombre 2019, 32, 4–5. [Google Scholar]
- SEMARNAT. Lineamientos Técnicos y de Gestión para la Atención de la Contingencia Ocasionada por Sargazo en el Caribe Mexicano y el Golfo de México; Mexican Government: Mexico City, Mexico, 2021; 50p.
- Desrochers, A.; Cox, S.-A.; Oxenford, H.A.; van Tussenbroek, B. Sargassum Uses Guide: A resource for Caribbean Researchers, Entrepreneurs, and Policy Makers; Centre for Resource Management and Environmental Studies (CERMES), University of the West Indies, Cave Hill Campus: Bridgetown, Barbados, 2020; 159p. [Google Scholar]
- Milledge, J.J.; Harvey, P.J. Golden tides: Problem or golden opportunity? The valorization of Sargassum from beach inundations. J. Mar. Sci. Eng. 2016, 4, 60. [Google Scholar] [CrossRef]
- Sembera, J.A.; Meier, E.J.; Waliczek, T.M. Composting as an alternative management strategy for Sargassum drifts on coastlines. HortTechnology 2018, 28, 80–84. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- FAO. Term Portal. Organic Agriculture. 2018. Available online: http://www.fao.org/faoterm (accessed on 16 October 2021).
- Avendaño-Romero, G.; López-Malo, A.; Paolu, E. Propiedades del alginato y aplicaciones en alimentos. Temas Sel. Ing. Aliment. 2013, 7, 87–96. [Google Scholar]
- Yang, J.Y.; Lim, S.Y. Fucoidans and Bowel Health. Mar. Drugs 2021, 19, 436. [Google Scholar] [CrossRef]
- Araiza-Macías, M.J.; Balandrano-Fernández, A.L.; Hernández-Contreras, J.P. Alga Sargazo Como Posible Fuente de Materias Primas para la Extracción de Carotenoides; Memorias Del XXI Concurso Lasallista de Investigación, Desarrollo e Innovación CLIDi, Universidad La Salle: Mexico City, Mexico, 2019; 4p. [Google Scholar]
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential use of seaweed bioactive compounds in skincare—A review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [Green Version]
- Ecosur. Ecomateriales. 1991. Available online: https://www.ecosur.org/index.php/es/ecomateriales-2 (accessed on 18 October 2021).
- Oxenford, H.A.; Cox, S.A.; van Tussenbroek, B.I.; Desrochers, A. Challenges of turning the Sargassum crisis into gold: Current constraints and implications for the Caribbean. Phycology 2021, 1, 27–48. [Google Scholar] [CrossRef]
- López-Aguilar, H.; Kennedy-Puentes, G.; Gómez, J.; Huerta-Reynoso, E.; Peralta-Pérez, M.D.R.; Zavala-Díaz de la Serna, F.; Pérez-Hernández, A. Practical and Theoretical Modeling of Anaerobic Digestion of Sargassum spp. in the Mexican Caribbean. Pol. J. Environ. Stud. 2021, 30, 3151–3161. [Google Scholar] [CrossRef]
- Tapia-Tussell, R.; Avila-Arias, J.; Domínguez Maldonado, J.; Valero, D.; Olguin-Maciel, E.; Pérez-Brito, D.; Alzate-Gaviria, L. Biological pretreatment of Mexican Caribbean macroalgae consortiums using Bm-2 strain (Trametes hirsuta) and its enzymatic broth to improve biomethane potential. Energies 2018, 11, 494. [Google Scholar] [CrossRef] [Green Version]
- Milledge, J.J.; Smith, B.; Dyer, P.W.; Harvey, P. Macro-algae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies 2014, 7, 7194–7222. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y.; Liu, D.; Zhang, H.; Liu, W.; Cui, G. SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms. Energy 2016, 113, 821–830. [Google Scholar] [CrossRef]
- Escobar, B.; Pérez-Salcedo, K.Y.; Alonso-Lemus, I.L.; Pacheco, D.; Barbosa, R. N-doped porous carbon from Sargassum spp. as metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 2017, 42, 30274–30283. [Google Scholar] [CrossRef]
- Pérez-Salcedo, K.Y.; Shi, X.; Kannan, A.M.; Barbosa, R.; Quintana, P.; Escobar, B. N-Doped porous carbon from Sargassum spp. as efficient metal-free electrocatalysts for O2 reduction in alkaline fuel cells. Energies 2019, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Medellín, D.; Pérez-Salcedo, K.Y.; Morales-Acosta, D.; Rodríguez-Varela, F.J.; Escobar, B. Green synthesis of Pt nanoparticles and their application in the oxygen reduction reaction. J. Mater. Res. 2021, 36, 4131–4140. [Google Scholar] [CrossRef]
- Saldarriaga-Hernández, S.; Hernández-Vargas, G.; Iqbal, H.M.; Barcelo, D.; Parra-Saldívar, R. Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. Sci. Total Environ. 2020, 715, 136978. [Google Scholar] [CrossRef]
- CONACYT, 2021. Pentahélice y la Innovación Abierta. Available online: https://conacyt.mx/conacyt/areas-del-conacyt/desarrollo-tecnologico-e-innovacion/programa-estrategico-nacional-de-tecnologia-e-innovacion-abierta-penta (accessed on 17 December 2021).
- De Aldecoa Quintana, J.M. Niveles de madurez tecnológica: Technology readiness levels: TRLS: Una introducción. Econ. Ind. 2014, 393, 165–171. [Google Scholar]
- HORIZON. 2020. Work Programme 2014–2015 General Annexes. Development of Technology Readiness Level (TRL) Metrics and Risk Measures. U.S. Department of Energy Technology Readiness Assessment Guide. U.S. Department of Energy Technology Readiness Levels Handbook for Space Applications. Available online: https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-ga_en.pdf (accessed on 12 April 2022).
- Gayosso-Rodríguez, S.; Borges-Gómez, L.; Villanueva-Couoh, E.; Estrada-Botello, M.A.; Garruña, R. Caracterización física y química de materiales orgánicos para sustratos agrícolas. Agrociencia 2018, 52, 639–652. [Google Scholar]
- Martínez-Carrera, D.; Larqué-Saavedra, A.; Vieyra, M.R.; Morales, P.; Castillo, I.; Bonilla, M.; Martínez, H. Los Hongos Comestibles, Funcionales y Medicinales: Alternativa Biotecnológica ante la Problemática Social, Económica y Ecológica del Sargazo en el Caribe Mexicano; Foro Consultivo Científico y Tecnológico, A.C.: Mexico City, Mexico, 2019; 15p. [Google Scholar]
- Bedoux, G.; Caamal-Fuentes, E.; Boulho, R.; Marty, C.; Bourgougnon, N.; Freile-Pelegrín, Y.; Robledo, D. Antiviral and cytotoxic activities of polysaccharides extracted from four tropical seaweed species. Nat. Prod. Commun. 2017, 12, 807–811. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Resendiz, K.J.G.; Covantes-Rosales, C.E.; Benítez-Trinidad, A.B.; Navidad-Murrieta, M.S.; Razura-Carmona, F.F.; Carrillo-Cruz, C.D.; Frias-Delgadillo, E.J.; Pérez-Díaz, D.A.; Díaz-Benavides, M.V.; Zambrano-Soria, M.; et al. Effect of Fucoidan on the Mitochondrial Membrane Potential (ΔΨm) of Leukocytes from Patients with Active COVID-19 and Subjects That Recovered from SARS-CoV-2 Infection. Mar. Drugs 2022, 20, 99. [Google Scholar] [CrossRef]
- Cruz-Estrada, R.H.; Cupul-Manzano, C.V.; Hernández-Rodríguez, I.F. Obtención de un compuesto con sargazo y plástico recuperado, con aplicación potencial como material de construcción. In Encuentro de Expertos en Residuos Sólidos; Cruz-Sotelo, S.E., Velasco Pérez, M.C., Ojeda Benítez, S.C., Jiménez Martínez, N.M., Ordaz Guillen, Y.C., Venegas Sahagún, B.A., Bernache Pérez, G.C., Hernández Berriel, M.C., González López, G.I., Jiménez Martínez, N., Eds.; Sociedad Mexicana de Ciencia y Tecnología Aplicada a Residuos Sólidos A.C.: Mexico City, Mexico, 2020; 8p. [Google Scholar]
- López-Sosa, L.; Morales-Máximo, M.; Anastacio-Paulino, R.; Custodio-Hernández, A.; Corral-Huacuz, J.; Aguilera-Mandujano, A. Electron microscopy characterization of Sargassum spp. from the Mexican Caribbean for application as a bioconstruction material. Microsc. Microanal. 2021, 27, 3140–3143. [Google Scholar] [CrossRef]
- Arellanos-Huerta, M.E. Desarrollo de un Biopolímero a Partir de Residuos Orgánicos. Bachelor’s Thesis, Universidad Abierta y a Distancia de México, Mexico City, Mexico, 2019. [Google Scholar]
- Aparicio, E. Producción de Bioetanol a Partir de Sargassum spp. Aplicando Pretratamientos Hidrotérmicos. Master’s Thesis, Universidad Autónoma de Coahuila, Saltillo, Mexico, 2020. [Google Scholar]
- Aparicio, E.; Rodríguez-Jasso, R.M.; Pinales-Márquez, C.D.; Loredo-Treviño, A.; Robledo-Olivo, A.; Aguilar, C.N.; Kostas, E.T.; Ruiz, H.A. High-pressure technology for Sargassum spp. biomass pretreatment and fractionation in the third generation of bioethanol production. Bioresour. Technol. 2021, 329, 124935. [Google Scholar] [CrossRef] [PubMed]
- González-Fuentes, F.J.; Molina, G.A.; Silva, R.; López-Miranda, J.L.; Esparza, R.; Hernandez-Martinez, A.R.; Estevez, M. Developing a CNT-SPE sensing platform based on green synthesized AuNPs, using Sargassum spp. Sensors 2020, 20, 6108. [Google Scholar] [CrossRef] [PubMed]
- López-Miranda, J.L.; Esparza, R.; González-Reyna, M.A.; España-Sánchez, B.L.; Hernandez-Martinez, A.R.; Silva, R.; Estévez, M. Sargassum influx on the Mexican coast: A source for synthesizing silver nanoparticles with catalytic and antibacterial properties. Appl. Sci. 2021, 11, 4638. [Google Scholar] [CrossRef]
- Pérez-Salcedo, K.Y. Generación de Energía Sustentable Mediante Electrocatalizadores a Partir del Sargassum sp. para la Reacción de Reducción de Oxígeno en Medio Alcalino. Ph.D. Thesis, CICY, Mérida, Yucatán, Mexico, 2019. [Google Scholar]
- López-Miranda, J.L.; Silva, R.; Molina, G.A.; Esparza, R.; Hernandez-Martinez, A.R.; Hernández-Carteño, J.; Estévez, M. Evaluation of a dynamic bioremediation system for the removal of metal ions and toxic dyes using Sargassum spp. J. Mar. Sci. Eng. 2020, 8, 899. [Google Scholar] [CrossRef]
- International Conference on Sargassum. 2019. International Accords. Available online: http://gefcrew.org/carrcu/International_Conference_on_Sargassum-en.pdf (accessed on 25 October 2021).
- Devault, D.A.; Modestin, E.; Cottereau, V.; Vedie, F.; Stiger-Pouvreau, V.; Pierre, R.; Coynel, A.; Dolique, F. The silent spring of Sargassum. Environ. Sci. Pollut. Res. 2021, 28, 15580–15583. [Google Scholar] [CrossRef]
- Assante, M.; Candela, L.; Castelli, D.; Manghi, P.; Pagano, P.; Nazionale, C. Science 2.0 repositories: Time for a change in scholarly communication. D-Lib Mag. 2015, 21, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Marzinelli, E.M.; Leong, M.R.; Campbell, A.H.; Steinberg, P.D.; Vergés, A. Does restoration of a habitat-forming seaweed restore associated faunal diversity? Restor. Ecol. 2016, 24, 81–90. [Google Scholar] [CrossRef]
- Fraga, J.; Robledo, D. COVID-19 and Sargassum blooms: Impacts and social issues in a mass tourism destination (Mexican Caribbean). Marit. Stud. 2022, 21, 159–171. [Google Scholar] [CrossRef]
- López-Miranda, J.L.; Celis, L.B.; Estévez, M.; Chávez, V.; Van Tussenbroek, B.I.; Uribe-Martínez, A.; Cuevas, E.; Pantoja, I.R.; Masia, L.; Cauich-Kantun, C.; et al. Commercial Potential of Pelagic Sargassum spp. in Mexico. Front. Mar. Sci. 2021, 8, 1–39. [Google Scholar] [CrossRef]
- Ministry of Foreign Affairs, European Union, and Cooperation (MAEUEC). Market Opportunities on Circular Economy in Mexico. 2019. Available online: https://www.rvo.nl/sites/default/files/2021/04/Market-opportunities-Circular-Economy-Mexico_1.pdf (accessed on 27 May 2022).
- Acton, L.; Campbell, L.M.; Cleary, J.; Gray, N.J.; Halpin, P.N. What is the Sargasso Sea? The problem of fixing space in a fluid ocean. Political Geogr. 2019, 68, 86–100. [Google Scholar] [CrossRef]
- Rosado-Espinosa, L.A.; Freile-Pelegrín, Y.; Hernández-Nuñez, E.; Robledo, D. A comparative study of Sargassum species from the Yucatan Peninsula coast: Morphological and chemical characterization. Phycologia 2020, 59, 261–271. [Google Scholar] [CrossRef]
- López Zenteno, A. Acciones para la Atención del Arribo Masivo del Sargazo en Aguas Mexicanas. Seminario-Taller Online Nacional Sobre Teledetección, Monitoreo, Pronóstico y Alerta Temprana del Sargazo Pelágico que Arriba a las Costas Mexicanas: Descubriendo Sinergias y Construyendo Puentes Hacia un Sistema Integral y Regional; CONACYT: Mexico City, Mexico, 2021.
- Uribe-Martínez, A.; Cuevas, E. Detección de Sargazo con Imágenes de Alta Resolución Espacial para la Estimación de Patrones Locales. Seminario-Taller Online Nacional Sobre Teledetección, Monitoreo, Pronóstico y Alerta Temprana del Sargazo Pelágico que Arriba a las Costas Mexicanas: Descubriendo Sinergias y Construyendo Puentes Hacia un Sistema Integral y Regional; CONACYT: Mexico City, Mexico, 2021.
- Salinas, J.A.; Maya-Magaña, M.E.; Hernández-Martínez, C. Diagnóstico de las Condiciones Atmosféricas Asociadas al Arribo de Sargazo a Costas de Quintana Roo; Research Internal Project; IMTA: Jiutepec, Morelos, Mexico, 2019; 39p. [Google Scholar]
- Sayas-Herazo, M.; Ramos-Díaz, A. Shock sistémico por Shewanella putrefaciens: Reporte de caso. Acta Colomb. Cuid. Intensivo 2021, 21, 334–337. [Google Scholar] [CrossRef]
- El Imparcial. Voluntarios Recolectan 48 Toneladas de Sargazo en Playas de QR. 2019. Available online: https://www.elimparcial.com/mexico/Voluntarios-recolectan-48-toneladas-de-sargazo-en-playas-de-QR-20190527-0006.html (accessed on 21 October 2021).
- Notired. Las Multas que se Pueden Pagar Levantando Sargazo en Cancún. 2019. Available online: https://www.notired.info/?p=9379 (accessed on 21 October 2021).
- La Jornada. Tres Empresas se Convierten en Emblema en pro del Medio Ambiente. 2019. Available online: https://www.jornada.com.mx/2019/07/21/economia/016n1eco (accessed on 21 October 2021).
- Rosas-Medellín, D. Utilización del Sargassum spp. para Síntesis Verde de Nanopartículas de Platino y Producción de Carbón para Aplicaciones en la Generación de Energía. Master’s Thesis, CICY, Mérida, Yucatán, Mexico, 2019. [Google Scholar]
Information Source | Identified Documents (n=) |
---|---|
Consorcio de Investigación del Golfo de México (CIGOM) | 2 |
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Repository | 2 |
Instituto Mexicano de Tecnología del Agua (IMTA) Repository | 6 |
Centro de Investigación Científica de Yucatán (CICY) Virtual library | 6 |
Centro Mexicano de Innovación en Energía Océano (CEMIE-Océano); Instituto Mexicano de la Propiedad Industrial (IMPI) | 8 |
Universidad Nacional Autónoma de México (UNAM) Repository | 9 |
Colegio de La Frontera Sur (ECOSUR) Repository | 10 |
Databases of projects funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) | 11 |
Non-structured online interviews | 15 |
Consorcio Nacional de Recursos de Información Científica y Tecnológica (CONRICyT) | 23 |
Instituto Politécnico Nacional (IPN) Repository | 44 |
Web of Science | 49 |
CONACYT Repository | 55 |
Google search and Google scholar | 435 |
Subarea | What It Is Known | Needs |
---|---|---|
Origin of the phenomenon | The transport of Sargassum from the ocean to coastal areas is not well understood and several variables are [30]. The nutrient input from rivers is not likely the main explanatory variable of atypical influxes [31] | Scientific evidence to support different hypothesis associated with massive growth; open-access databases of variables to support models |
Changes in biological and genetic structure of floating biomass (morphotypes) | Sargassum morphotypes in Mexico differ from those reported in the Sargasso Sea [32] | Systematized identification of species |
Morphology shows phenotypic variations according to habitat and season [25,26] | ||
Carbon sink and sediment supply to the deep sea and coasts | Sargassum fixate CO2 and it is a vital carbon sink and calcium carbonate producer for the coasts [33,34] | Calcite production mechanisms in Sargassum and its epiphyte communities; Sargassum carbon flux measurements to deep ecosystems |
Biological associations | Biological associations between Sargassum and various taxa vary in diversity and abundance according to the size of the Sargassum raft and its distance from the beach [3,4,35,36] | Characterization of biological associations in open ocean, nearshore waters, and on the beach |
Subarea | What It Has Been Done | Needs |
---|---|---|
Remote sensing and ocean and coastal monitoring | Algorithms for the detection of Sargassum rafts from satellite images at different spatial and temporal resolutions [43,44,45] | Continuous (i.e., hourly) and high-resolution (i.e., meters) detection of Sargassum rafts in coastal areas |
Interactive platforms to visualize Sargassum at open ocean (Supplementary File S3) | ||
Numerical models for drift prediction | Nested numerical models for the coastal zone [46,47] | Resolving bathymetric, hydrographic and atmospheric conditions at appropriate resolution |
Numerical models that include the biophysiological characteristics of Sargassum [39,48] | Numerical models with high predictive capacity that can simulate the behavior of Sargassum; knowledge about Sargassum physiology, biological parameters, etc. | |
High-frequency radar coastal infrastructure to determine coastal scale wind and sea current patterns [49] | Expansion of coverage and maintenance of this infrastructure | |
Early Warning | Warning bulletins and Sargassum traffic lights (Supplementary File S3) | Development of a robust early warning system to predict beach strandings |
Monitoring in situ | Online platform to collect and synthetize information on Sargassum volumes that arrive to the coast (Supplementary File S3) | Continuous and systematic records of the occurrence of the phenomenon at fine temporal (i.e., daily) and spatial (i.e., meters) scales |
Sargassum population dynamics [50] | ||
Citizen Science for in situ monitoring [51,52] | Improvements in statal telecommunication infrastructure (i.e., widespread free internet access) and massive informative campaigns |
Subarea | What It Is Known | Needs |
---|---|---|
Tourism | Not all indicators reflect a clear trend in relation to atypical influxes [53] | Continuous and systematic monitoring of tourism indicators that allows to distinguish Sargassum-related fluctuations from other variables (e.g., inefficient tourism promotion, local insecurity) |
Commercial fisheries | During atypical influxes, fishermen reduce or alter their activity [60] | Documenting social impacts; a socio-economical perspective of the phenomenon |
Human health and air pollution | Toxic gas emissions from decomposing Sargassum and the potential growth of pathogenic bacteria [61] | Documenting of health impacts; a public health perspective of the phenomenon |
Leachates, eutrophication and contamination of aquifers and cenotes | Coastal eutrophication leads to mortality of marine organisms [12,57] | Management strategies that allow to contain and harvest Sargassum at sea; determination of disposal sites with adequate infrastructure to prevent leachates pollution; banning clandestine dumping; regulations compliance; studies outside touristic areas; restoration of beaches; long- term monitoring program |
The region’s aquifer, including the cenotes, are contaminated because of leachates [59]; indirect contamination of cenotes also occurs due to a shift in tourism activities from the sea to coastal areas [14] | ||
Species of the reef lagoon and coastal zone | Oxidative damage in turtles [62]; fewer turtle hatchlings [63] | |
Loss of the seagrasses and the seafloor [12] | ||
Total or partial mortality of coral reefs [64,65,66] | ||
Fish and crustaceans’ massive mortality [13] | ||
Erosion of beaches | Heavy machinery used to collect Sargassum affects the coastal dynamics by removing and compacting the sand [67] | Documenting containment and harvest technologies’ impacts |
Subarea | What It Has Been Done | Needs |
---|---|---|
Containment and deflection at sea | Development and installation of barriers (Supplementary File S3) | Inventory of current technological developments, their effectiveness and their ecological effects (i.e., fauna disruption, substrate removal by anchorage systems, sand erosion and compaction, etc.) |
Harvesting at sea | Development and use of trawlers (Supplementary File S3) | Increasing the number and processing capacity of trawlers; development of on-board pre-processing techniques (e.g., milling, washing, pressing, etc. |
Collecting at beach | Manual harvest (Supplementary File S3) | Adequate material and maintenance; working conditions’ regulations |
Mechanical machinery that prevents beach erosion and sand compaction (Supplementary File S3) | Technological developments and innovation; monitoring and development of indicators to assess erosion, compaction and other ecosystem perturbations | |
Pre-processing techniques (e.g., sand removal, drying, etc.) (Supplementary File S3) | ||
Temporary transfer and final disposal stations | Incipient integrated management plans (Supplementary File S3) | Sargassum primary treatment stations; Sargassum disposal sites with adequate infrastructure characteristics to prevent leachates pollution; regulations compliance |
Subarea | What It Has Been Done | Needs |
---|---|---|
Agriculture industry and livestock goods | Development of compost (Supplementary File S3) | Change adverse perception of stranded Sargassum; intra and interannual characterization studies and bromatological analysis; determine suitability and safety of products and by-products; harvesting and processing (i.e., drying, pressing, desalination, milling) logistics; disposal procedures that facilitate technically, ecologically and economically viable conservation and storage for a permanent supply; Sargassum biomass pre-treatment with fungi and other microorganisms to increase energy efficiency |
Sargassum-based substrates are rich in potassium magnesium and sodium. High salinity is a challenge for plant cultivation, but these substrates are suitable for the growth of commercial mushrooms [92,93] | ||
Development and commercialization of biostimulants and biofertilizers (Supplementary File S3) | ||
Chemistry, pharmaceutics and nutritional supplements | Extraction of alginates and fucoidans and commercialization of nutritional supplements (Supplementary File S3); fucoidan explored as treatment against herpes virus type I [94] and COVID-19 [95] | |
Fucoxanthin extraction processes [77] | ||
Ecomaterials | Development and commercialization of bioconstruction materials (concrete, bricks and plates) (Supplementary File S3; [96,97]) | |
Development and commercialization of Sargassum cellulose fiber footwear (Supplementary File S3) | ||
Development of biopolymers with similar characteristics to those of conventional plastics (Supplementary File S3; [98]) | ||
Sargassum cellulose extraction and the development and commercialization of sustainable products (notebooks, agendas, folders, cup holders, menu holders and business cards, etc.) (Supplementary File S3) | ||
Livestock feed | Sargassum as food for laying hens (Supplementary File S3) | |
Bioenergetics | Bioethanol production using a high-pressure technology pretreatment [99,100]. | |
Biomethane production (Supplementary File S3; [81]) | ||
Biodiesel prototype product (Supplementary File S3) | ||
Energy generation through hydrothermal carbonization (Supplementary File S3) | ||
Advanced Materials | Sargassum aqueous extracts for electrocatalysts and the synthesis of platinum, gold and silver nanoparticles that can be used in the construction of electrochemical glucose sensing platforms, in the catalytic activity for blue methylene degradation and as antibacterials for Staphylococcus aureus and Pseudomonas aeruginosa) [85,86,87,101,102,103] | |
Bioremediation and purification mechanisms | Effectiveness of a Sargassum-based bioremediation system for the removal of metal ions and toxic dyes in water [104] |
Subarea | What It Has Been Done | Needs |
---|---|---|
Regulations and legal framework | The Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) National Guidelines (Supplementary File S3) | Compulsory compliance of these guidelines; regulatory frameworks such as a NOM (Norma Oficial Mexicana or Mexican Official Standard) |
Communication and education strategies | Articles, specialized magazines, websites of different federal government agencies, and mobile applications (Supplementary File S3) | Local, state and regional informative campaigns |
International cooperation | Mexico joined SargCoop [105] | Multilateral strategies that bring together the knowledge and experiences of different nations |
Restoration of affected habitats | Efforts to restore and rehabilitate ecosystems affected by atypical Sargassum influxes have not been documented in Mexico | Understanding of environmental impacts of influxes; indicators to measure and monitor the ecological and environmental impacts over time; an adequate coastal regionalization that would allow a differentiated Sargassum management in different zones |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosellón-Druker, J.; Calixto-Pérez, E.; Escobar-Briones, E.; González-Cano, J.; Masiá-Nebot, L.; Córdova-Tapia, F. A Review of a Decade of Local Projects, Studies and Initiatives of Atypical Influxes of Pelagic Sargassum on Mexican Caribbean Coasts. Phycology 2022, 2, 254-279. https://doi.org/10.3390/phycology2030014
Rosellón-Druker J, Calixto-Pérez E, Escobar-Briones E, González-Cano J, Masiá-Nebot L, Córdova-Tapia F. A Review of a Decade of Local Projects, Studies and Initiatives of Atypical Influxes of Pelagic Sargassum on Mexican Caribbean Coasts. Phycology. 2022; 2(3):254-279. https://doi.org/10.3390/phycology2030014
Chicago/Turabian StyleRosellón-Druker, Judith, Edith Calixto-Pérez, Elva Escobar-Briones, Jaime González-Cano, Luis Masiá-Nebot, and Fernando Córdova-Tapia. 2022. "A Review of a Decade of Local Projects, Studies and Initiatives of Atypical Influxes of Pelagic Sargassum on Mexican Caribbean Coasts" Phycology 2, no. 3: 254-279. https://doi.org/10.3390/phycology2030014
APA StyleRosellón-Druker, J., Calixto-Pérez, E., Escobar-Briones, E., González-Cano, J., Masiá-Nebot, L., & Córdova-Tapia, F. (2022). A Review of a Decade of Local Projects, Studies and Initiatives of Atypical Influxes of Pelagic Sargassum on Mexican Caribbean Coasts. Phycology, 2(3), 254-279. https://doi.org/10.3390/phycology2030014