Rosemary Essential Oil Extraction and Residue Valorization by Means of Polyphenol Recovery †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Plant Sampling and EO Extraction
2.3. Polyphenols Extraction and Quantification
2.4. Antioxidant Activity Assay
2.5. Sun Protection Factor Determination
2.6. Statistical Analyses
3. Results and Discussion
3.1. Rosemary EO
3.2. Polyphenol Extraction from Rosemary EO Residue
3.3. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, D.N. Essential oils extracted from medicinal plants and their applications. In Natural Bio-Active Compounds; Akhtar, M., Swamy, M., Sinniah, U., Eds.; Springer: Singapore, 2019; Volume 1: Production and Applications; pp. 237–283. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; Núnez, M.J.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Xiao, Z.B.; Zhou, R.J.; Niu, Y.W.; Yi, F.P.; Zhu, J.C. The utilization of aromatic plant waste resource. Adv. Mater. Res. 2012, 518, 3561–3565. [Google Scholar] [CrossRef]
- Saha, A.; Basak, B.B. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind. Crop. Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Bouloumpasi, E.; Biliaderis, C.G. Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem. Adv. 2022, 1, 100065. [Google Scholar] [CrossRef]
- Nieto, G. Biological activities of three essential oils of the Lamiaceae family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef]
- Raja, R.R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. J. Med. Plant Res. 2012, 6, 203–213. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus officinalis L. (rosemary): An ancient plant with uses in personal healthcare and cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Jamshidi, R.; Afzali, Z.; Afzali, D. Chemical composition of hydrodistillation essential oil of rosemary in different origins in Iran and comparison with other countries. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 78–81. [Google Scholar]
- Giacometti, J.; Kovačević, D.B.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from Mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef]
- Terpinc, P.; Bezjak, M.; Abramovic, H. A kinetic model for evaluation of the antioxidant activity of several rosemary extracts. Food Chem. 2009, 115, 740–744. [Google Scholar] [CrossRef]
- Hosseini, H.; Bolourian, S.; Yaghoubi Hamgini, E.; Ghanuni Mahababadi, E. Optimization of heat-and ultrasound-assisted extraction of polyphenols from dried rosemary leaves using response surface methodology. J. Food Process. Preserv. 2018, 42, e13778. [Google Scholar] [CrossRef]
- EFSA. Use of rosemary extracts as a food additive. Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food. EFSA J. 2008, 721, 1–29. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines (EDQM). European Pharmacopoeia—Current EU Approved Additives and Their E Numbers, 6th ed.; Council of Europe: Strasbourg, France, 2008; p. 251. [Google Scholar]
- EFSA. Refined exposure assessment of extracts of rosemary (E 392) from its use as food additive Panel on Food Additives and Nutrient Sources added to Food. EFSA J. 2018, 16, 5373. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines and HealthCare (EDQM). European Pharmacopeia Method 2.08.12: Essential Oils in Herbal Drugs; Council of Europe: Strasbourg, France, 2005. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Vella, F.M.; Calandrelli, R.; Cautela, D.; Fiume, I.; Pocsfalvi, G.; Laratta, B. Chemometric screening of fourteen essential oils for their composition and biological properties. Molecules 2020, 25, 5126. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
- Vella, F.M.; Cautela, D.; Laratta, B. Determination of antioxidant activity and sun protection factor of commercial essential oils. Biol. Life Sci. Forum 2021, 6, 96. [Google Scholar] [CrossRef]
- Boutekedjiret, C.; Bentahar, F.; Belabbes, R.; Bessiere, J.M. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr. J. 2003, 18, 481–484. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J.Á. CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Bousbia, N.; Vian, M.A.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves: Hydrodistillation and microwave hydrodiffusion and gravity. Food Chem. 2009, 114, 355–362. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Ceccarini, L. Main agronomic productive characteristics of two ecotypes of Rosmarinus officinalis L. and chemical composition of their essential oils. J. Agric. Food Chem. 2002, 50, 3512–3517. [Google Scholar] [CrossRef] [PubMed]
- Angioni, A.; Barra, A.; Cereti, E.; Barile, D.; Coïsson, J.D.; Arlorio, M.; Dessi, S.; Coroneo, V.; Cabras, P. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J. Agric. Food Chem. 2004, 52, 3530–3535. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rojo, S.; Visentin, A.; Maestri, D.; Cocero, M.J. Assisted extraction of rosemary antioxidants with green solvents. J. Food Eng. 2012, 109, 98–103. [Google Scholar] [CrossRef]
- Fang, X.; Wang, J.; Wang, Y.; Li, X.; Zhou, H.; Zhu, L. Optimization of ultrasonic-assisted extraction of wedelolactone and antioxidant polyphenols from Eclipta prostrate L using response surface methodology. Sep. Purif. Technol. 2014, 138, 55–64. [Google Scholar] [CrossRef]
- Cujić, N.; Savikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef]
- Ghitescu, R.E.; Volf, I.; Carausu, C.; Bühlmann, A.M.; Gilca, I.A.; Popa, V.I. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 2015, 22, 535–541. [Google Scholar] [CrossRef]
- Juntachote, T.; Berghofer, E.; Bauer, F.; Siebenhandl, S. The application of response surface methodology to the production of phenolic extracts of lemon grass, galangal, holy basil and rosemary. Int. J. Food Sci. Technol. 2006, 41, 121–133. [Google Scholar] [CrossRef]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatographic–mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A 2006, 1120, 221–229. [Google Scholar] [CrossRef] [PubMed]
Wavelength (nm) | Absorbance (Abs) |
---|---|
290 | 0.1619 ± 0.022 |
295 | 0.1902 ± 0.013 |
300 | 0.2186 ± 0.010 |
305 | 0.2412 ± 0.017 |
310 | 0.2821 ± 0.024 |
315 | 0.3754 ± 0.035 |
320 | 0.6075 ± 0.029 |
SPF | 2.55 |
Extraction Parameters | 25 °C | 40 °C | 50 °C | 60 °C | 70 °C |
---|---|---|---|---|---|
50%–15 min | 10.14 ± 0.38 | 15.04 ± 0.51 | 18.56 ± 0.53 | 18.01 ± 0.46 | 18.12 ± 0.60 |
60%–15 min | 15.37 ± 0.62 | 16.31 ± 0.46 | 19.22 ± 0.54 | 20.18 ± 0.65 | 21.19 ± 0.52 |
70%–15 min | 17.62 ± 0.81 | 20.96 ± 0.47 | 20.32 ± 0.48 | 20.59 ± 0.52 | 21.21 ± 0.50 |
80%–15 min | 15.14 ± 0.82 | 19.67 ± 0.40 | 21.11 ± 0.57 | 21.01 ± 0.28 | 21.60 ± 0.54 |
50%–30 min | 15.14 ± 0.32 | 15.78 ± 0.65 | 18.69 ± 0.51 | 18.35 ± 0.57 | 17.75 ± 0.51 |
60%–30 min | 16.31 ± 0.62 | 19.65 ± 0.86 | 18.81 ± 0.38 | 18.05 ± 0.63 | 21.27 ± 0.77 |
70%–30 min | 18.90 ± 0.61 | 21.24 ± 0.68 | 21.46 ± 0.69 | 20.83 ± 0.81 | 22.11 ± 0.58 |
80%–30 min | 19.02 ± 0.63 | 22.89 ± 0.42 | 20.74 ± 0.62 | 22.15 ± 0.48 | 23.34 ± 0.71 |
50%–60 min | 13.12 ± 0.61 | 17.64 ± 0.69 | 19.73 ± 0.65 | 19.12 ± 0.61 | 18.31 ± 0.55 |
60%–60 min | 16.83 ± 0.49 | 18.17 ± 0.56 | 20.75 ± 0.58 | 21.99 ± 0.64 | 21.29 ± 0.42 |
70%–60 min | 18.63 ± 0.58 | 20.96 ± 0.42 | 21.39 ± 0.57 | 22.22 ± 0.42 | 21.50 ± 0.65 |
80%–60 min | 19.47 ± 0.57 | 19.99 ± 0.62 | 21.62 ± 0.64 | 22.30 ± 0.40 | 24.14 ± 0.54 |
EC50 (µg/mL) | |
---|---|
PE | 143.90 |
EO | 240.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vella, F.M.; Laratta, B. Rosemary Essential Oil Extraction and Residue Valorization by Means of Polyphenol Recovery. Biol. Life Sci. Forum 2023, 26, 8. https://doi.org/10.3390/Foods2023-15024
Vella FM, Laratta B. Rosemary Essential Oil Extraction and Residue Valorization by Means of Polyphenol Recovery. Biology and Life Sciences Forum. 2023; 26(1):8. https://doi.org/10.3390/Foods2023-15024
Chicago/Turabian StyleVella, Filomena Monica, and Bruna Laratta. 2023. "Rosemary Essential Oil Extraction and Residue Valorization by Means of Polyphenol Recovery" Biology and Life Sciences Forum 26, no. 1: 8. https://doi.org/10.3390/Foods2023-15024
APA StyleVella, F. M., & Laratta, B. (2023). Rosemary Essential Oil Extraction and Residue Valorization by Means of Polyphenol Recovery. Biology and Life Sciences Forum, 26(1), 8. https://doi.org/10.3390/Foods2023-15024