Enteric Methane Emission from Sheep Fed with Rhodes Grass Hay (Chloris gayana) Alone or Supplemented with Dried Distillers’ Grains with Solubles
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Experimental Treatments, Study Location and Animal Procedures
3.2. Measurement of Enteric Methane Emissions
3.3. Chemical Analysis
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO/WHO Expert Committee on Food Additives. Meeting. Joint FAO/WHO Expert Committee on Food Additives, & Meeting Staff. Compendium of Food Additive Specifications: Joint FAO/WHO Expert Committee on Food Additives: 67th Meeting. Food and Agriculture Organization. 2006. Available online: http://www.fao.org (accessed on 24 August 2022).
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. IPCC Fourth Assessment Report (AR4). In Climate Change; IPCC: Geneva, Switzerland, 2007; pp. 133–171. [Google Scholar]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zlmmerman, P. Measurement of Methane Emissions from Ruminant Livestock Using a SF6 Tracer Technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Gerber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Beauchemin, K.A.; McAllister, T.A.; McGinn, S.M. Dietary mitigation of enteric methane from cattle. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2009, 4, 1–18. [Google Scholar]
- Leng, R.A. Quantitative ruminant nutrition—A green science. Aust. J. Agric. Res. 1993, 44, 363–380. [Google Scholar]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [PubMed]
- Min, B.-R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals 2022, 12, 948. [Google Scholar]
- Patra, A.K.; Lalhriatpuii, M.; Debnath, B.C. Predicting enteric methane emission in sheep using linear and non-linear statistical models from dietary variables. Anim. Prod. Sci. 2016, 56, 574–584. [Google Scholar]
- Congio, G.F.; Bannink, A.; Mayorga, O.L.; Rodrigues, J.P.; Bougouin, A.; Kebreab, E.; Carvalho, C.F.; Abdalla, L.; Monteiro, L.G.; Hristov, A.N.; et al. Prediction of enteric methane production and yield in sheep using a Latin America and Caribbean database. Livest. Sci. 2022. [Google Scholar] [CrossRef]
- Savin, K.W.; Moate, P.J.; Williams, S.R.O.; Bath, C.; Hemsworth, J.; Wang, J.; Ram, D.; Zawadzki, J.; Rochfort, S.; Cocks, B.G. Dietary wheat and reduced methane yield are linked to rumen microbiome changes in dairy cows. PLoS ONE 2022, 17, e0268157. [Google Scholar]
- Tyagi, N.; Mishra, D.B.; Vinay, V.V.; Kumar, S. Feasible Strategies for Enteric Methane Mitigation from Dairy Animals. In Animal Manure. Soil Biology; Mahajan, S., Varma, A., Eds.; Springer: Cham, Germany, 2022; Volume 64, pp. 335–354. [Google Scholar]
- Wolin, M.; Miller, T.; Stewart, C. Microbe-microbe interactions. In The Rumen Microbial Ecosystem, 1st ed.; Hobson, P.N., Stewart, C.S., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 467–491. [Google Scholar]
- Goel, G.; Makkar, H.P. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2012, 44, 729–739. [Google Scholar]
- Lee, M.A.; Davis, A.P.; Chagunda, M.G.G.; Manning, P. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 2017, 14, 1403–1417. [Google Scholar]
- Cooke, R.F.; Caigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020, 98, 1–20. [Google Scholar]
- Klopfenstein, T.J.; Erickson, G.E.; Bremer, V.R. Board-invited review: Use of distillers by-products in the beef cattle feeding industry. J. Anim. Sci. 2008, 86, 1223–1231. [Google Scholar] [PubMed]
- Li, Y.L.; McAllister, T.A.; Beauchemin, K.A.; He, M.L.; McKinnon, J.J.; Yang, W.Z. Substitution of wheat dried distillers grains with solubles for barley grain or barley silage in feedlot cattle diets: Intake, digestibility, and ruminal fermentation. J. Anim. Sci. 2011, 89, 2491–2501. [Google Scholar] [PubMed]
- Spiehs, M.J.; Whitney, M.H.; Shurson, G.C. Nutrient database for distiller’s dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota. J. Anim. Sci. 2002, 80, 2639–2645. [Google Scholar] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Paulus Compart, D.M.; Carlson, A.M.; Crawford, G.I.; Fink, R.C.; Diez-Gonzalez, F.; DiCostanzo, A.; Shurson, G.C. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production. J. Anim. Sci. 2013, 91, 2395–2404. [Google Scholar]
- Taheripour, F.; Hertel, T.W.; Tyner, W.E.; Beckman, J.F.; Birur, D.K. Biofuels and their by-products: Global economic and environmental implications. Biomass Bioenergy 2010, 34, 278–289. [Google Scholar] [CrossRef]
- Morton, L.W.; Shea, E. Frontier: Beyond Productivity—Recreating the Circles of Life to Deliver Multiple Benefits with Circular Systems. J. Agric. Saf. Health 2022, 65, 411–418. [Google Scholar] [CrossRef]
- Gere, J.I.; Bualó, R.A.; Perini, A.L.; Arias, R.D.; Ortega, F.M.; Wulff, A.E.; Berra, G. Methane emission factors for beef cows in Argentina: Effect of diet quality. N. Z. J. Agri. Res. 2019, 64, 260–268. [Google Scholar] [CrossRef]
- Jaurena, G.; Wawrzkiewicz, M. Programa para el Mejoramiento de la Evaluación de Forrajes y Alimentos (PROMEFA). In Guía de procedimientos, Centro de Investigación y Servicios en Nutrición Animal; Facultad de Agronomía-Universidad de Buenos Aires: Buenos Aires, Argentina, 2021. [Google Scholar]
- Helrich, K. Association of Official Analytical Chemists. In Official Methods of Analysis, Association of the Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar]
- Goering, H.R.; van Soest, P.J. Forage Fiber Analyses; Agricultural Handbook No. 379; United States Department of Agricultum: Washington, DC, USA, 1970. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Mccollum, F.T.; Galyean, M.L.; Krysl, L.J.; Wallace, J.D. Cattle Grazing Blue Grama Rangeland I. Seasonal Diets and Rumen Fermentation. J. Range Manag. 1985, 38, 539–543. [Google Scholar] [CrossRef]
- Beaty, J.L.; Cochran, R.C.; Lintzenich, B.A.; Vanzant, E.S.; Morrill, J.L.; Brandt, R.T., Jr.; Johnson, D.E. Effect of frequency of supplementation and protein concentration in supplements on performance and digestion characteristics of beef cattle consuming low-quality forages. J. Anim. Sci. 1994, 72, 2475–2486. [Google Scholar] [CrossRef] [PubMed]
- Mathis, C.P.; Cochran, R.C.; Stokka, G.L.; Heldt, J.S.; Woods, B.C.; Olson, K.C. Impacts of increasing amounts of supplemental soybean meal on intake and digestion by beef steers and performance by beef cows consuming low-quality tallgrass prairie forage. J. Anim. Sci. 1999, 77, 3156–3162. [Google Scholar] [CrossRef]
- Winterholler, S.J.; Holland, B.P.; McMurphy, C.P.; Krehbiel, C.R.; Horn, G.W.; y Lalman, D.L. Use of dried distillers grains in preconditioning programs for weaned beef calves and subsequent impact on wheat pasture, feedlot, and carcass performance. Prof. Anim. Sci. 2009, 25, 722–730. [Google Scholar] [CrossRef]
- Morris, S.E.; Klopfenstein, T.J.; Adams, D.C.; Erickson, G.E.; VanderPol, K.J. The effects of dried distillers grains on heifers consuming low or high quality forage. Nebraska Beef Rep. 2005, 18–20. [Google Scholar]
- Schauer, C.S.; Stamm, M.M.; Maddock, T.D.; Berg, P.B. Feeding of DDGS in lamb rations. Sheep Goat Res. J. 2008, 23, 15–19. [Google Scholar]
- Felix, T.L.; Zerby, H.N.; Moeller, S.J.; Loerch, S.C. Effects of increasing dried distillers grains with soluble on performance, carcass characteristics, and digestibility of feedlot lambs. J. Anim. Sci. 2012, 90, 1356–1363. [Google Scholar] [CrossRef]
- McGinn, S.M.; Beauchemin, K.A.; Flesch, T.K.; Coates, T. Performance of a dispersion model to estimate methane loss from cattle in pens. J. Environ. Qual. 2009, 38, 1796–1802. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F.; Gervais, R.; Chouinard, P.Y.; Julien, C.; Petit, H.V. Effects of increasing amounts of corn-dried distillers’ grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 2413–2427. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Grainger, C.; Williams, R.; Clarke, T.; Wright, A.-D.; Eckard, R. Supplementation with whole cottonseed causes long-term reduction of methane emissions from lactating dairy cows offered a forage and cereal grain diet. J. Dairy Sci. 2010, 93, 2612–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, Y.H.; He, M.L.; McGinn, S.M.; McAllister, T.A.; Beauchemin, K.A. Linseed suppresses enteric methane emissions from cattle fed barley silage, but not from those fed grass hay. Anim. Feed Sci. Technol. 2011, 166–167, 321–329. [Google Scholar] [CrossRef]
- Johnson, D.E.; Johnson, K.A. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Lassey, K.R. Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agric. For. Meteorol. 2007, 142, 120–132. [Google Scholar] [CrossRef]
- Amaral, G.A.; David, D.B.; Gere, J.I.; Savian, J.V.; Kohmann, M.M.; Nadin, L.B.; Sánchez, F.; Bayer, C.; Carvalho, P.C. Methane emissions from sheep grazing pearl millet (Pennisetum americanum (L.) Leek) swards fertilized with increasing nitrogen levels. Small Rumin. Res. 2016, 141, 118–123. [Google Scholar] [CrossRef]
- Savian, J.V.; Neto, A.B.; de David, D.B.; Bremm, C.; Schons, R.M.T.; Genro, T.C.M.; do Amaral, G.A.; Gere, J.; McManus, C.M.; Bayer, C.; et al. Grazing intensity and stocking methods on animal production and methane emission by grazing sheep: Implications for integrated crop-livestock system. Agric. Ecosyst. Environ. 2014, 190, 112–119. [Google Scholar] [CrossRef] [Green Version]
Chemical Fraction | Feed | ||
---|---|---|---|
Hay | DDGS | Hay + DDGS | |
Dry matter (g·kg−1 as fed) | 806 | 796 | 806 |
Ash | 136 | 49 | 118 |
Crude Protein | 74 | 285 | 149 |
Neutral detergent fibre | 737 | 440 | 616 |
Acid detergent fibre | 401 | 120 | 293 |
Lignin | 72 | 22 | 51 |
Ether extract | 15 | 120 | 54 |
Water soluble carbohydrates | 40 | 71 | 49 |
Starch | 78 | 96 | 83 |
Dry matter digestibility | 310 | - | 450 |
Gross energy (MJ∙kg−1) | 17 | 21 | 19 |
Treatments | SEM 1 | p Value | ||
---|---|---|---|---|
H | H + DDGS | |||
Dry matter intake (g·d−1) | ||||
Hay | 679 | 535 | 65 | 0.054 |
DDGS | 0 | 292 | - | - |
Total | 679 | 827 | 69 | 0.035 |
Total (% liveweight) | 1.2 | 1.5 | 0.14 | 0.049 |
CH4 emission | ||||
CH4 (g·d−1) | 21 | 16 | 1.1 | 0.014 |
CH4 (g·kg−1 dry matter intake) | 31 | 20 | 1.9 | 0.005 |
Ym (%) 2 | 10.1 | 5.7 | 0.6 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gere, J.I.; Feksa Frasson, M.; Wawrzkiewicz, M.; Fernández Pepi, M.G.; Ramos, M.L.; Bualó, R.; Cerón-Cucchi, M.E.; Jaurena, G. Enteric Methane Emission from Sheep Fed with Rhodes Grass Hay (Chloris gayana) Alone or Supplemented with Dried Distillers’ Grains with Solubles. Methane 2022, 1, 210-217. https://doi.org/10.3390/methane1030017
Gere JI, Feksa Frasson M, Wawrzkiewicz M, Fernández Pepi MG, Ramos ML, Bualó R, Cerón-Cucchi ME, Jaurena G. Enteric Methane Emission from Sheep Fed with Rhodes Grass Hay (Chloris gayana) Alone or Supplemented with Dried Distillers’ Grains with Solubles. Methane. 2022; 1(3):210-217. https://doi.org/10.3390/methane1030017
Chicago/Turabian StyleGere, José Ignacio, Mónica Feksa Frasson, Marisa Wawrzkiewicz, María Gabriela Fernández Pepi, María Laura Ramos, Ricardo Bualó, María Esperanza Cerón-Cucchi, and Gustavo Jaurena. 2022. "Enteric Methane Emission from Sheep Fed with Rhodes Grass Hay (Chloris gayana) Alone or Supplemented with Dried Distillers’ Grains with Solubles" Methane 1, no. 3: 210-217. https://doi.org/10.3390/methane1030017