Characterization of Seed Quality Traits Within 61 Chickpea (Cicer arietinum) Genotypes: Ionomes and Daily Values
Abstract
:1. Introduction
- (1)
- Determine the variability in essential nutrient concentrations within 61 chickpea genotypes;
- (2)
- Analyze the percent daily value (% DV) of nutrients and their interrelationships;
- (3)
- Identify promising superior chickpea genotypes for future food security and chickpea development breeding efforts.
2. Materials and Methods
2.1. Seed Material of Chickpea Genotypes
2.2. Multi-Element Seed Analysis Using Inductively Coupled Plasma Spectroscopy
2.3. Protein Analysis and Oil Analysis of Chickpe Seeds
2.4. Estimating the Nutrient Values (% DV) of Chickpea Seeds
2.5. Data Analysis
3. Results
3.1. Comparison of Variations in Chickpea Multi-Element Contents
3.2. Correlations Among Chickpea Seed Nutrients
3.3. Determination of Chickpea Seed Nutritional Value (% DV)
3.4. Identification of Top Twelve Superior Promising Chickpea Genotypes
4. Discussion
4.1. Nutritional Profiling of Chickpeas
4.2. Percent Daily Values (% DV) Nutrient Contributions of Chickpea Seeds
4.3. Correlations Among Nutrients in Chickpea Seeds
4.4. Future Research Directions and Possible Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, K.B. Chickpea (Cicer arietinum). Field Crops Res. 1997, 53, 161–170. [Google Scholar] [CrossRef]
- Redden, R.; Berger, J.D. History and origin of chickpea. In Chickpea Breeding and Management; Yadav, S.S., Redden, R., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 1–13. [Google Scholar]
- FAOSTAT. FAO Statistical Databases; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; B2023; Available online: http://www.fao.org/faostat (accessed on 1 December 2024).
- FAO. Pulses. Nutritious Seeds for a Sustainable Future; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Sandhu, J.S.; Tripathi, S.; Chaturvedi, S.K. Chickpea Nutritional Status and Value Chain for Sustainable Development. In Sustainable Food Value Chain Development: Perspectives from Developing and Emerging Economies; Springer: Singapore, 2023; pp. 175–183. [Google Scholar]
- Tefera, M. Study the genetic diversity in protein, zinc and iron in germplasm pools of desi type chickpeas as implicated in quality breeding. J. Equity Sci. Sustain. Dev. 2021, 4, 56–70. [Google Scholar]
- Serrano, C.; Carbas, B.; Castanho, A.; Soares, A.; Vaz Patto, M.C.; Brites, C. Characterization of nutritional quality traits of a chickpea (Cicer arietinum) germplasm collection exploited in chickpea breeding in Europe. Crop Pasture Sci. 2017, 68, 1031–1040. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhu, C.; Singh, R.P.; Chen, W. Chickpea: Its origin, distribution, nutrition, benefits, breeding, and symbiotic relationship with mesorhizobium species. Plants 2024, 13, 429. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32, 31–40. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; De Moura, F.F.; Islam, Y.; Pfeiffer, W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Nadeem, M.A. Exploring the phenotypic diversity for seed mineral contents in Turkish faba bean germplasm. Int. J. Agric. Wild. Sci. 2021, 7, 540–550. [Google Scholar]
- Campos, A.C.A.; van Dijk, W.F.; Ramakrishna, P.; Giles, T.; Korte, P.; Douglas, A.; Smith, P.; Salt, D.E. 1135 ionomes reveal the global pattern of leaf and seed mineral nutrient and trace element diversity in Arabidopsis thaliana. Plant J. 2021, 106, 536–554. [Google Scholar] [CrossRef]
- Govindaraj, M.; Rai, K.N.; Kanatti, A.; Upadhyaya, H.D.; Shivade, H.; Rao, A.S. Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement. Sci. Rep. 2020, 10, 21177. [Google Scholar] [CrossRef]
- Ziegler, G.; Terauchi, A.; Becker, A.; Armstrong, P.; Hudson, K.; Baxter, I. Ionomic screening of field-grown soybean identifies mutants with altered seed elemental composition. Plant Gen. 2013, 6, 1–9. [Google Scholar] [CrossRef]
- Hacisalihoglu, G.; Settles, A.M. Quantification of Seed Ionome Variation in 90 Diverse Soybean (Glycine max) Lines. J. Plant Nutr. 2017, 40, 2808–2817. [Google Scholar] [CrossRef]
- Traore, F.; El-Baouchi, A.; En-Nahli, Y.; Hejjaoui, K.; Metougui, M.L.; Hamwieh, A.; Sohail, Q.; Istanbuli, T.; Boughribil, S.; Amri, M. Exploring the Genetic Variability and Potential Correlations Between Nutritional Quality and Agro-Physiological Traits in Kabuli Chickpea Germplasm Collection (Cicer arietinum L.). Front. Plant Sci. 2022, 13, 905320. [Google Scholar]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 2014, 3, e02245. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.K.; Mishra, I. United Nations Sustainable Development Goals 2030 and environmental sustainability: Race against time. J. Environ. Sustain. 2019, 2, 339–342. [Google Scholar] [CrossRef]
- Aishwarya, S.; Anisha, V. Nutritional composition of sunflower seeds flour and nutritive value of products prepared by incorporating sunflower seeds flour. Int. J. Pharm. Res. Allied Sci. 2014, 3, 45–49. [Google Scholar]
- Hacisalihoglu, G.; Beisel, N.; Settles, A.M. Characterization of pea seed nutritional value within a diverse population of Pisum sativum. PLoS ONE 2021, 16, e0259565. [Google Scholar] [CrossRef]
- Dotto, J.M.; Chacha, J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Kulczynski, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef]
- FDA. Nutrient Content Claims for ‘Good Source’,‘High’,‘More’, and ‘High Potency’, Specific Requirements for Nutrient Content Claims. Food Labeling, Code of Federal Regulations, Title 21, Chapter I, Subchapter B, Part 101, Subpart D, Section 101.54; FDA: Concord, NH, USA, 2023.
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Ibanez, M.V.; Rinch, F.; Amaro, M.; Martinez, B. Intrinsic variability of mineral composition of chickpea (Cicer arietinum L.). Food Chem. 1998, 63, 55–60. [Google Scholar] [CrossRef]
- Panthee, D.R.; Pantalone, V.R.; West, D.R.; Saxton, A.M.; Sams, C.E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci. 2005, 45, 2015–2022. [Google Scholar] [CrossRef]
Genotypes | P | Ca | Mg | Zn | Fe | Cu | Mn | B | Oil | Protein |
---|---|---|---|---|---|---|---|---|---|---|
µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | % | % | |
2985 | 3323 | 688 | 1642 | 29.4 | 39.8 | 7.04 | 25.1 | 14.2 | 4.88 | 17.3 |
773303 | 3985 | 462 | 1566 | 29.0 | 41.3 | 6.50 | 23.0 | 13.7 | 4.13 | 18.2 |
020785-0103 | 2707 | 770 | 1663 | 25.9 | 41.0 | 6.24 | 17.4 | 8.3 | 5.36 | 16.0 |
020785-0103D | 2668 | 568 | 1295 | 20.5 | 32.3 | 5.12 | 15.8 | 8.0 | 3.74 | 17.8 |
230785-0302D | 3925 | 529 | 1478 | 27.3 | 35.8 | 6.41 | 31.1 | 11.0 | 3.88 | 20.1 |
280785-1102 | 3596 | 666 | 1635 | 24.1 | 36.2 | 6.88 | 33.7 | 10.9 | 5.50 | 15.4 |
300685-0803 | 3016 | 465 | 1594 | 25.6 | 44.2 | 6.40 | 15.3 | 10.2 | 5.20 | 15.1 |
870525-05 | 4756 | 565 | 2041 | 36.1 | 56.4 | 8.56 | 25.8 | 13.5 | 4.81 | 14.5 |
Annigeri | 3633 | 399 | 1466 | 24.1 | 40.2 | 6.92 | 16.7 | 10.2 | 5.26 | 12.6 |
Bel | 2674 | 582 | 1390 | 28.3 | 40.8 | 5.91 | 22.0 | 11.1 | 4.79 | 21.9 |
CM72 | 4022 | 690 | 1656 | 27.3 | 41.5 | 5.89 | 29.2 | 11.6 | 4.35 | 22.5 |
Dwelley | 4232 | 978 | 1951 | 35.1 | 38.1 | 5.80 | 44.4 | 15.4 | 5.14 | 21.4 |
E92-10 | 4058 | 398 | 1758 | 21.3 | 50.5 | 5.28 | 19.4 | 9.2 | 4.09 | 21.3 |
Evans | 3734 | 679 | 1642 | 22.6 | 46.5 | 5.35 | 25.8 | 12.9 | 4.50 | 18.4 |
Flip84-79 | 4013 | 352 | 1823 | 27.6 | 38.4 | 6.47 | 15.3 | 10.1 | 5.59 | 17.9 |
Garbanza | 3644 | 1268 | 1872 | 26.3 | 45.1 | 7.12 | 42.5 | 11.3 | 4.14 | 16.0 |
Garnet | 7313 | 452 | 2101 | 56.5 | 77.1 | 11.30 | 47.3 | 14.7 | 4.47 | 17.6 |
I-13 | 6125 | 636 | 2466 | 37.2 | 62.6 | 8.67 | 39.8 | 16.5 | 3.10 | 20.8 |
ICC13720 | 3542 | 526 | 2066 | 27.8 | 49.5 | 7.36 | 31.4 | 9.6 | 3.91 | 20.7 |
ICC1882 | 4014 | 539 | 1823 | 28.5 | 51.6 | 5.67 | 23.2 | 10.7 | 3.38 | 22.8 |
ICC4958 | 4591 | 633 | 2124 | 32.4 | 55.4 | 7.78 | 25.6 | 9.6 | 4.63 | 21.8 |
ICC6267 | 5181 | 940 | 1969 | 31.6 | 41.4 | 9.04 | 30.9 | 15.6 | 3.45 | 26.5 |
ICC6268 | 6082 | 1022 | 2216 | 33.3 | 58.5 | 7.47 | 27.0 | 13.1 | 4.82 | 23.1 |
ICC6270 | 3397 | 571 | 1513 | 19.4 | 41.3 | 4.69 | 19.7 | 7.4 | 3.95 | 26.0 |
ICC6272 | 3823 | 789 | 1885 | 21.5 | 54.4 | 6.50 | 20.6 | 7.0 | 3.13 | 20.3 |
ICC8165 | 2573 | 448 | 1232 | 16.8 | 29.5 | 3.64 | 14.9 | 7.4 | 3.79 | 18.8 |
ICC8172 | 3139 | 828 | 1805 | 18.3 | 42.9 | 5.22 | 27.2 | 6.5 | 5.48 | 18.6 |
ICC8178 | 5201 | 475 | 2199 | 28.8 | 51.9 | 7.71 | 14.7 | 10.8 | 3.67 | 25.0 |
ICC8191 | 4324 | 535 | 1815 | 31.1 | 34.0 | 7.14 | 20.3 | 8.3 | 3.56 | 17.9 |
ICC8201 | 3484 | 683 | 1936 | 32.8 | 48.0 | 7.14 | 36.5 | 9.2 | 4.33 | 20.0 |
ICC8205 | 3843 | 882 | 1831 | 28.6 | 49.8 | 6.71 | 29.0 | 8.4 | 4.79 | 21.4 |
ICC8207 | 4385 | 406 | 1744 | 36.4 | 47.4 | 7.64 | 23.5 | 12.8 | 3.66 | 21.8 |
ICC8210 | 4238 | 847 | 2036 | 34.5 | 47.4 | 6.59 | 39.4 | 12.1 | 4.46 | 22.1 |
ICC8226 | 4940 | 806 | 1877 | 33.0 | 47.2 | 7.36 | 30.6 | 11.9 | 3.30 | 19.4 |
ICC8962 | 3440 | 965 | 1821 | 26.1 | 48.0 | 6.34 | 45.0 | 9.9 | 3.79 | 21.7 |
ICC9491 | 5022 | 703 | 1798 | 38.2 | 61.6 | 8.74 | 23.8 | 10.2 | 6.35 | 18.6 |
ICC9492 | 3215 | 446 | 1561 | 27.8 | 42.7 | 5.69 | 26.2 | 10.6 | 3.06 | 26.1 |
ICC9496 | 4457 | 582 | 1695 | 42.6 | 55.6 | 8.60 | 32.1 | 11.1 | 3.49 | 21.9 |
ICC9497 | 3378 | 424 | 1419 | 23.7 | 37.8 | 6.74 | 20.7 | 8.2 | 5.55 | 14.7 |
ICC9514 | 4348 | 484 | 1646 | 28.7 | 44.3 | 6.95 | 29.0 | 9.6 | 2.96 | 21.6 |
ICCV1 | 4382 | 1016 | 1786 | 29.7 | 34.9 | 8.40 | 35.0 | 11.5 | 3.79 | 19.9 |
ICCV10 | 3609 | 572 | 1777 | 28.6 | 38.4 | 9.25 | 21.4 | 13.8 | 4.89 | 14.4 |
ICCV2 | 4041 | 491 | 1887 | 17.3 | 32.0 | 6.81 | 23.7 | 9.6 | 3.45 | 22.1 |
ICCV3 | 3848 | 1008 | 1500 | 25.8 | 34.2 | 6.03 | 47.1 | 10.8 | 5.06 | 18.3 |
ICCV5 | 4792 | 415 | 1671 | 35.3 | 46.4 | 8.44 | 27.7 | 11.0 | 5.82 | 13.9 |
ICCV6 | 2891 | 1038 | 1836 | 33.0 | 37.6 | 5.98 | 41.8 | 11.5 | 3.47 | 23.7 |
ICCV7 | 3046 | 1601 | 2158 | 30.6 | 50.8 | 6.66 | 43.5 | 10.7 | 4.00 | 19.5 |
ILC11907 | 3809 | 470 | 1586 | 30.5 | 42.5 | 6.79 | 24.2 | 7.9 | 4.75 | 15.6 |
ILC1687 | 5702 | 627 | 2355 | 39.3 | 55.9 | 7.60 | 26.5 | 13.3 | 5.29 | 18.8 |
ILC1929 | 3822 | 448 | 1669 | 18.9 | 45.5 | 5.39 | 20.9 | 10.7 | 4.84 | 19.9 |
ILC195 | 3520 | 283 | 1481 | 27.2 | 38.4 | 6.63 | 27.1 | 9.90 | 4.64 | 18.4 |
ILC239 | 4096 | 820 | 1792 | 32.2 | 49.1 | 7.53 | 35.1 | 9.20 | 3.71 | 24.2 |
ILC247 | 3196 | 467 | 1476 | 19.6 | 38.6 | 4.67 | 15.9 | 7.30 | 4.91 | 16.0 |
ILC249 | 3779 | 608 | 1592 | 23.8 | 45.8 | 7.39 | 28.1 | 8.70 | 5.42 | 13.8 |
ILC2588 | 4250 | 536 | 2116 | 27.6 | 57.9 | 9.31 | 28.4 | 9.10 | 4.65 | 16.4 |
ILC3279 | 3542 | 420 | 1670 | 34.9 | 42.2 | 5.67 | 30.0 | 11.7 | 4.72 | 18.3 |
ILC3304 | 3222 | 426 | 1814 | 22.7 | 48.3 | 6.53 | 17.5 | 8.20 | 5.40 | 17.6 |
ILC3383 | 3540 | 600 | 1884 | 35.6 | 53.9 | 8.54 | 33.7 | 8.20 | 4.11 | 21.6 |
ILC3444 | 3756 | 731 | 2160 | 39.7 | 56.4 | 9.63 | 41.6 | 9.60 | 5.05 | 21.1 |
ILC41 | 3813 | 736 | 1925 | 29.8 | 40.8 | 6.22 | 32.4 | 10.5 | 5.16 | 16.8 |
ILC516 | 4103 | 446 | 1630 | 34.2 | 36.5 | 6.59 | 30.0 | 13.3 | 5.46 | 17.6 |
Avg. | 3980 | 647 | 1784 | 29.2 | 45.5 | 6.93 | 28.1 | 10.6 | 4.38 | 19.6 |
SE | 113 | 31.0 | 32.6 | 0.88 | 1.13 | 0.17 | 1.12 | 0.29 | 0.13 | 0.60 |
Min | 2573 | 283 | 1232 | 16.8 | 29.5 | 3.64 | 14.7 | 6.50 | 3.10 | 12.6 |
Max | 7313 | 1601 | 2466 | 56.5 | 77.1 | 11.3 | 47.3 | 16.5 | 5.59 | 26.5 |
Mineral Nutrient | % DV | Level |
---|---|---|
Mn | 122 | Excellent |
Cu | 77.0 | Excellent |
Mg | 42.5 | Excellent |
P | 31.8 | Excellent |
Zn | 26.5 | Excellent |
Fe | 25.3 | Excellent |
Ca | 4.98 | Low |
Chickpea Genotype | Performance | Origin | |
---|---|---|---|
Garnet | Highest: P, Zn, Fe, Cu, Mn | High: Mn, B | USA |
I-13 | Highest: Mg, B | High: P, Zn, Fe, Cu, Mn | Pakistan |
ICC6267 | Highest: Protein | High: Cu, B | USA |
ICC9491 | Highest: Oil | High: P, Zn, Fe, Cu | USA |
ICC6268 | Highest: - | High: P, Ca, Mg, Fe, Protein | India |
ICCV7 | Highest: Ca | High: Mg | India |
ILC1687 | Highest: - | High: P, Mg | USA |
Garbanza | Highest: - | High: Ca | Mexico |
Dwelley | Highest: - | High: Ca | USA |
ILC3444 | Highest: - | High: Zn, Fe, Cu, Mn | Spain |
Flip84-79 | Highest: - | High: Oil | Syria |
ILC239 | Highest: - | High: Protein | Ethiopia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hacisalihoglu, G.; White, G.; Salters, V. Characterization of Seed Quality Traits Within 61 Chickpea (Cicer arietinum) Genotypes: Ionomes and Daily Values. Seeds 2025, 4, 15. https://doi.org/10.3390/seeds4010015
Hacisalihoglu G, White G, Salters V. Characterization of Seed Quality Traits Within 61 Chickpea (Cicer arietinum) Genotypes: Ionomes and Daily Values. Seeds. 2025; 4(1):15. https://doi.org/10.3390/seeds4010015
Chicago/Turabian StyleHacisalihoglu, Gokhan, Gary White, and Vincent Salters. 2025. "Characterization of Seed Quality Traits Within 61 Chickpea (Cicer arietinum) Genotypes: Ionomes and Daily Values" Seeds 4, no. 1: 15. https://doi.org/10.3390/seeds4010015
APA StyleHacisalihoglu, G., White, G., & Salters, V. (2025). Characterization of Seed Quality Traits Within 61 Chickpea (Cicer arietinum) Genotypes: Ionomes and Daily Values. Seeds, 4(1), 15. https://doi.org/10.3390/seeds4010015