Research on a Streamlined Causal Tree Algorithm Based on Factor Space Theory †
Abstract
:1. Introduction
2. Basic Knowledge
3. The Streamlined Causal Tree Algorithm
3.1. Algorithm Principle
3.1.1. Theoretical Knowledge
3.1.2. Algorithm Principle
3.2. Setting of the Threshold
3.3. Algorithm Steps
3.4. Instance Analysis
3.5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.Z.; Sugeno, M. Background structure of factor field and Fuzzy Set. Fuzzy Math. 1982, 2, 45–54. [Google Scholar]
- Wang, P.Z.; Guo, S.C.; Bao, Y.K.; Liu, H.T. Factor Analysis Method in Factor Space. J. Liaoning Tech. Univ. (Nat. Sci.) 2014, 33, 865–870. [Google Scholar]
- Bao, Y.K.; Ru, H.Y.; Jin, S.J. A new algorithm of knowledge mining in factor space. J. Liaoning Tech. Univ. (Nat. Sci.) 2014, 33, 1141–1144. [Google Scholar]
- Liu, H.T.; Guo, S.C. Reasoning model of factor analysis method. J. Liaoning Tech. Univ. (Nat. Sci.) 2015, 34, 124–128. [Google Scholar]
- Wang, H.D.; Wang, P.Z.; Guo, S.C. Improved factor analysis on factor spaces. J. Liaoning Tech. University. Nat. Sci. 2015, 34, 539–544. [Google Scholar]
- Fan, S.B.; Zhang, Z.J.; Huang, J. Association Rule Classification Method for Decision Tree Pruning Strengthening. Comput. Eng. Appl. 2023, 59, 87–94. [Google Scholar]
- Wang, P.Z.; Liu, H.T. Factor Space and Artificial Intelligence, 1st ed.; Beijing University of Posts and Telecommunications Press: Beijing, China, 2021; pp. 89–92. [Google Scholar]
U | F→g | ||||
---|---|---|---|---|---|
f1 | f2 | fn | g | ||
u1 | fj(ui) | g(ui) | |||
u2 | |||||
um |
Datasets | Indexes | Factor Analysis Method | Streamlined Causal Tree Algorithm | ID3 | C4.5-PEP |
---|---|---|---|---|---|
Lymphography | Number of decision rules | 45 | 24 | 50 | 28 |
Accuracy | 0.7614 | 0.8514 | 0.7438 | 0.7567 | |
Precision | 0.7822 | 0.8781 | 0.8106 | 0.8074 | |
Recall | 0.7614 | 0.8514 | 0.7438 | 0.7567 | |
F1 | 0.7619 | 0.853 | 0.7549 | 0.7627 | |
Time/ms | 55 | 40 | 57 | 74 | |
Dermatology | Number of decision rules | 98 | 26 | 125 | 31 |
Accuracy | 0.7593 | 0.9167 | 0.7011 | 0.9134 | |
Precision | 0.8238 | 0.9525 | 0.8073 | 0.9487 | |
Recall | 0.7593 | 0.9167 | 0.7011 | 0.9134 | |
F1 | 0.7776 | 0.929 | 0.7359 | 0.9224 | |
Time/ms | 201 | 133 | 216 | 358 | |
Cancer | Number of decision rules | 86 | 34 | 85 | 75 |
Accuracy | 0.9312 | 0.9634 | 0.9224 | 0.9313 | |
Precision | 0.9394 | 0.9608 | 0.9326 | 0.9389 | |
Recall | 0.8622 | 0.9297 | 0.8413 | 0.8637 | |
F1 | 0.895 | 0.9441 | 0.8838 | 0.8983 | |
Time/ms | 90 | 50 | 108 | 132 | |
Australian | Number of decision rules | 263 | 38 | 222 | 160 |
Accuracy | 0.7348 | 0.8768 | 0.7739 | 0.8116 | |
Precision | 0.7795 | 0.922 | 0.8045 | 0.8506 | |
Recall | 0.7236 | 0.854 | 0.7834 | 0.8077 | |
F1 | 0.7479 | 0.884 | 0.7917 | 0.8259 | |
Time/ms | 209 | 90 | 203 | 274 | |
Tic-tac-toe | Number of decision rules | 271 | 76 | 190 | 122 |
Accuracy | 0.7828 | 0.8487 | 0.8476 | 0.7975 | |
Precision | 0.8367 | 0.8481 | 0.8939 | 0.8378 | |
Recall | 0.8277 | 0.9395 | 0.8687 | 0.8588 | |
F1 | 0.8306 | 0.8903 | 0.8805 | 0.847 | |
Time/ms | 240 | 120 | 193 | 257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.; Zeng, F.; Liu, X.; Wang, Y.; Zhang, K. Research on a Streamlined Causal Tree Algorithm Based on Factor Space Theory. Comput. Sci. Math. Forum 2023, 8, 72. https://doi.org/10.3390/cmsf2023008072
Lin K, Zeng F, Liu X, Wang Y, Zhang K. Research on a Streamlined Causal Tree Algorithm Based on Factor Space Theory. Computer Sciences & Mathematics Forum. 2023; 8(1):72. https://doi.org/10.3390/cmsf2023008072
Chicago/Turabian StyleLin, Kaile, Fanhui Zeng, Xiaotong Liu, Ying Wang, and Kaijie Zhang. 2023. "Research on a Streamlined Causal Tree Algorithm Based on Factor Space Theory" Computer Sciences & Mathematics Forum 8, no. 1: 72. https://doi.org/10.3390/cmsf2023008072
APA StyleLin, K., Zeng, F., Liu, X., Wang, Y., & Zhang, K. (2023). Research on a Streamlined Causal Tree Algorithm Based on Factor Space Theory. Computer Sciences & Mathematics Forum, 8(1), 72. https://doi.org/10.3390/cmsf2023008072