Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset Derivation
2.2. Cluster Analysis
2.3. Regression Analysis
3. Results and Discussion
3.1. Clustering Results
3.2. Regression Analysis Results
3.2.1. Cluster 2
3.2.2. Global Model
3.3. CORDEX-EURO RCA4 Regression Analysis Results
3.3.1. Cluster 1
3.3.2. RCA4 Cluster 2
3.3.3. RCA4 Global Model
3.4. CORDEX-MENA RCA 4 Regression Analysis Results
3.4.1. MENA RCA4 Cluster 1
3.4.2. MENA Global Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Li, H.; Reggiani, P. Climate Variability and Climate Change Impacts on Land Surface, Hydrological Processes and Water Management. Water 2019, 11, 1492. [Google Scholar] [CrossRef]
- Bergström, S.; Lindström, G. Interpretation of runoff processes in hydrological modelling-experience from the HBV approach. Hydrol. Process. 2015, 29, 3535–3545. [Google Scholar] [CrossRef]
- Beck, H.; Van Dick, A. Global-Scale Regionalization of Hydrologic Model Parameters. 2016. Available online: https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1002/2015WR018247 (accessed on 12 March 2022).
- Rezaeianzadeh, M.; Tabari, H.; Yazdi, A.A.; Isik, S.; Kalin, L. Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 2013, 25, 25–37. [Google Scholar] [CrossRef]
- Alivi, A.; Yildiz, O.; Aktürk, G. Investigating the climate change effects on annual average streamflows in the Euphrates-Tigris basin using the climate elasticity method. J. Fac. Eng. Archit. Gazi Univ. 2021, 36, 1449–1465. [Google Scholar] [CrossRef]
- Laimighofer, J.; Melcher, M.; Laaha, G. Parsimonious statistical learning models for low-flow estimation. Hydrol. Earth Syst. Sci. 2022, 26, 129–148. [Google Scholar] [CrossRef]
- Aich, V.; Liersch, S.; Vetter, T.; Huang, S.; Tecklenburg, J.; Hoffmann, P.; Koch, H.; Fournet, S.; Krysanova, V.; Müller, E.N.; et al. Comparing impacts of climate change on streamflow in four large African river basins. Hydrol. Earth Syst. Sci. 2014, 18, 1305–1321. [Google Scholar] [CrossRef]
- Yang, Z.; Villarini, G.; Scoccimarro, E. Evaluation of the capability of regional climate models in reproducing the temporal clustering in heavy precipitation over Europe. Atmospheric Res. 2022, 269, 106027. [Google Scholar] [CrossRef]
- Belvederesi, C.; Zaghloul, M.S.; Achari, G.; Gupta, A.; Hassan, Q.K. Modelling river flow in cold and ungauged regions: A review of the purposes, methods, and challenges. Environ. Rev. 2022, 30, 159–173. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Q.; Voisin, N.; Cui, H. Projected impacts of climate change on hydropower potential in China. Hydrol. Earth Syst. Sci. 2016, 20, 3343–3359. [Google Scholar] [CrossRef]
- Önöz, B.; Ve Bulu, A. Frequency Analysis of Low Flows by the PPCC Test in Turkey; FRIEND-97, 1-4 Ekim; IAHS: Postojna, Slovenia, 1997. [Google Scholar]
- Rossi, G.; Caporali, E. Regional Estimation Method Of Rivers Low Flow from River Basin Characteristics; Department of Civil and Environmental Engineering, University of Firenze: Firenze, Italy, 2017. [Google Scholar]
- Li, H.; Huang, G.; Li, Y.; Sun, J.; Gao, P. A C-Vine Copula-Based Quantile Regression Method for Streamflow Forecasting in Xiangxi River Basin, China. Sustainability 2021, 13, 4627. [Google Scholar] [CrossRef]
- Sengupta, A.; Adams, S.K.; Bledsoe, B.P.; Stein, E.D.; McCune, K.S.; Mazor, R.D. Tools for managing hydrologic alteration on a regional scale: Estimating changes in flow characteristics at ungauged sites. Freshw. Biol. 2018, 63, 769–785. [Google Scholar] [CrossRef]
- Gustard, A.; Marshall, D.C.W.; Sutcliffe, M.F. Low Flow Estimation in Scotland; Report No. 101; Institute of Hydrology: Wallingford, WA, USA, 1987. [Google Scholar]
- Supriya, P.; Krishnaveni, M.; Subbulakshmi, M. Regression Analysis of Annual Maximum Daily Rainfall and Stream Flow for Flood Forecasting in Vellar River Basin. Aquat. Procedia 2015, 4, 957–963. [Google Scholar] [CrossRef]
- Needhidasan, S.; Chenchu Babu, K.; Natrayan, M.; Naveen, D.C.; Vinothkumar, S. Preserving the Environment Due to the Flash Floods in Vellar River at TV Puthur, Virudhachalam Taluk, Tamil Nadu: A Case Study. Int. J. Struct. Civ. Eng. Res. 2013, 2, 104–114. [Google Scholar]
- Roland, M.A.; Stuckey, M.H. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania; U.S. Geological Survey Scientific Investigations Report 2008-5102; U.S. Geological Survey: Reston, VA, USA, 2008; 57p. [Google Scholar]
- Waltemeyer, S.D. Analysis of the Magnitude and Frequency of the 4-Day Annual Low Flow and Regression Equations for Estimating the 4-Day, 3-Year Low-Flow Frequency at Ngagged Sites on Unregulated Streams in New Mexico; U.S. Geological Survey Water-Resources Investigations Report 01–4271; U.S. Geological Survey: Reston, VA, USA, 2002; 22p. [Google Scholar] [CrossRef]
- Shi, P.; Chen, X.; Qu, S.M.; Zhang, Z.C.; Ma, J.L. Regional Frequency Analysis of Low Flow Based On L Moments: Case Study İn Karst Area, Southwest China. J. Hydrol. Eng. 2010, 15, 370–377. [Google Scholar] [CrossRef]
- Evans, J.P.; Smith, R.B.; Oglesby, R.J. Middle East climate simulation and dominant precipitation processes. Int. J. Clim. 2004, 24, 1671–1694. [Google Scholar] [CrossRef]
- Leavesley, G.H. Modeling the effects of climate change on water resources—A review. Clim. Chang. 1994, 28, 159–177. [Google Scholar] [CrossRef]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef]
- Lu, W.X.; Zhao, Y.; Chu, H.B.; Yang, L.L. The analysis of groundwater levels influenced by dual factors in western Jilin Province by using time series analysis method. Appl. Water Sci. 2013, 4, 251–260. [Google Scholar] [CrossRef]
- Vicuna, S.; Dracup, J.A. The evolution of climate change impact studies on hydrology and water resources in California. Clim. Chang. 2007, 82, 327–350. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Thomas, W.O. Low-Flow Frequency Estimation Using Base-Flow Measurements; Open-File Report 85-95; U.S. Geological Survey: Reston, VA, USA, 1985; pp. 85–95. [Google Scholar]
- USGS. Estimation Of Minimum 7-Day, 2-Year Discharge for Selected Stream Sites, and Associated Low-Flow Water-Quality Data, Southeast Texas, 1997–1998. 2013. Available online: http://pubs.usgs.gov/fs/fs-122-99/pdf/ (accessed on 12 March 2022).
- Sadik, A.K.; Barghouti, S. The Water Problems of the Arab World: Management of Scarce Water Resources. In Water in the Arab World; Rogers, P., Lydon, P., Eds.; Harvard University Press: Cambridge, MA, USA, 1994; pp. 4–37. [Google Scholar]
- Li, L.-J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.-W.; Jiang, D.-J.; Li, J.-Y.; Qin, D.-Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. 2007, 21, 3485–3491. [Google Scholar] [CrossRef]
- Li, X.; Meshgi, A.; Wang, X.; Zhang, J.; Tay, S.H.X.; Pijcke, G.; Manocha, N.; Ong, M.; Nguyen, M.T.; Babovic, V. Three resampling approaches based on method of fragments for daily-to-subdaily precipitation disaggregation. Int. J. Clim. 2018, 38, e1119–e1138. [Google Scholar] [CrossRef]
- Joo, H.; Lee, M.; Kim, J.; Jung, J.; Kwak, J.; Kim, H.S. Stream gauge network grouping analysis using community detection. Stoch. Environ. Res. Risk Assess. 2021, 35, 781–795. [Google Scholar] [CrossRef]
- Immerzeel, W.; Pellicciotti, F.; Bierkens, M. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat. Geosci. 2013, 6, 742–745. [Google Scholar] [CrossRef]
- Tangborn, W.V.; Rasmussen, L.A. Hydrology of the North Cascades Region, Washington: 2. A proposed hydrometeorological streamflow prediction method. Water Resour. Res. 1976, 12, 203–216. [Google Scholar] [CrossRef]
- Yıldız, D. Natural Diminishing Trend of the Tigris and Euphrates Streamflows is Alarming for the Middle East Future. World Sci. News 2016, 47, 279–297. [Google Scholar]
- Türkeş, M.; Sümer, U.M.; Kiliç, G. Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. Int. J. Clim. 1995, 15, 557–569. [Google Scholar] [CrossRef]
- Li, J.; Feng, P.; Wei, Z. Incorporating the data of different watersheds to estimate the effects of land use change on flood peak and volume using multi-linear regression. Mitig. Adapt. Strat. Glob. Chang. 2013, 18, 1183–1196. [Google Scholar] [CrossRef]
- Demircan, M.; Gürkan, H.; Eskioğlu, O.; Arabacı, H.; Coşkun, M. Climate Change Projections for Turkey: Three Models and Two Scenarios. Turk. J. Water Sci. Manag. 2017, 1, 22–43. [Google Scholar] [CrossRef]
- Kilinc, H.C.; Haznedar, B. A Hybrid Model for Streamflow Forecasting in the Basin of Euphrates. Water 2022, 14, 80. [Google Scholar] [CrossRef]
- Lombard, P.J.; Holtschlag, D.J. Estimating Lag to Peak between Rainfall and Peak Streamflow with a Mixed-Effects Model. JAWRA J. Am. Water Resour. Assoc. 2018, 54, 949–961. [Google Scholar] [CrossRef]
- Nielsen, N.M.; Smink, W.A.C.; Fox, J.-P. Small and negative correlations among clustered observations: Limitations of the linear mixed effects model. Behaviormetrika 2021, 48, 51–77. [Google Scholar] [CrossRef]
- Helsel, D.R.; Ve Hirsch, R.M. Studies İn Environmental Science 49. Statistical Methods İn Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; 522p. [Google Scholar]
- Sergienko, O.V.; Bindschadler, R.A.; Vornberger, P.L.; MacAyeal, D.R. Ice stream basal conditions from block-wise surface data inversion and simple regression models of ice stream flow: Application to Bindschadler Ice Stream. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
CORDEX Meteorological Parameter | Abbreviation | Unit |
---|---|---|
Near Surface Air Temperature | T | Kelvin |
Near Surface Maximum Air Temperature | Kelvin | |
Near Surface Minimum Air Temperature | Kelvin | |
Precipitation | p | |
Convective Precipitation | ||
Shortwave Radiation | ||
Longwave Radiation | ||
Evapotranspiration | PET | |
Near Surface Specific Humidity | H | % |
Duration of Sunshine | s | |
Total Soil Moisture | kg/m2 | |
Sea Level Pressure | P | Pa |
Near Surface Windspeed | m/s |
CORDEX Domain | Resolution | Global Climate Model | Regional Climate Model |
---|---|---|---|
CORDEX-MENA | 0.22° | NOAA-GFDL CM3 | RCA4 |
CORDEX-EURO | 0.22° | CNRM-CERFACS-CNRM-CM5 | RCA4 |
CORDEX-EURO | 0.11° | MOHC-HadGEM2-ES | RegCM4 |
Month | Maximum (m−3/s) | Minimum (m−3/s) | Mean Discharge (m−3/s) | Standard Deviation (m−3/s) | Coefficience of Variation |
---|---|---|---|---|---|
October | 345 | 42.3 | 105 | 64 | 0.43 |
November | 705 | 102 | 350 | 142 | 0.53 |
December | 1332 | 165 | 562 | 302 | 0.85 |
January | 1452 | 162 | 752 | 333 | 0.52 |
February | 1252 | 142 | 741 | 420 | 0.48 |
March | 2500 | 401 | 1189 | 601 | 0.61 |
April | 3201 | 1101 | 1741 | 591 | 0.62 |
May | 2945 | 502 | 1510 | 714 | 0.39 |
June | 1422 | 305 | 540 | 325 | 0.51 |
July | 740 | 101 | 295 | 150 | 0.72 |
August | 199 | 45 | 150 | 76 | 0.6 |
September | 253 | 34 | 133 | 51 | 0.36 |
Annual | 1362 | 258 | 725 | 278 | 0.46 |
Cluster No. | 1 | 2 |
---|---|---|
2102 | 2122 | |
2135 | 2124 | |
2603 | 2131 | |
2610 | 2133 | |
21,140 | 2149 | |
21,172 | 2154 | |
21,209 | 2156 | |
21,238 | 2157 | |
21,270 | 2164 | |
2632 | 2166 | |
2652 | 2612 | |
2664 | 2620 | |
2104 | ||
2141 | ||
21,160 | ||
21,186 | ||
21,207 | ||
21,208 | ||
21,212 | ||
21,227 | ||
2616 |
CORDEXEURO | ||
---|---|---|
RegCM4 | RCA4 | |
1st Cluster | ||
2nd Cluster | ||
Global | ||
RCA4 | ||
1st Cluster | ||
2nd Cluster | ||
Global |
Domain | CORDEX-EURO | CORDEX-MENA | |||||||
---|---|---|---|---|---|---|---|---|---|
RCM | RegCM4 | RCA4 | RCA4 | ||||||
Cluster No. | 1 | 2 | Global | 1 | 2 | Global | 1 | 2 | Global |
Adj R2 | 0.762 | 0.743 | 0.678 | 0.791 | 0.766 | 0.669 | 0.859 | 0.824 | 0.742 |
R2 | 0.748 | 0.729 | 0.654 | 0.779 | 0.749 | 0.652 | 0.838 | 0.803 | 0.720 |
RMSE | 0.209 | 0.218 | 0.312 | 0.176 | 0.189 | 0.302 | 0.102 | 0.108 | 0.198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzey, G.E.; Onoz, B. Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin. Analytics 2023, 2, 577-591. https://doi.org/10.3390/analytics2030032
Guzey GE, Onoz B. Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin. Analytics. 2023; 2(3):577-591. https://doi.org/10.3390/analytics2030032
Chicago/Turabian StyleGuzey, Goksel Ezgi, and Bihrat Onoz. 2023. "Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin" Analytics 2, no. 3: 577-591. https://doi.org/10.3390/analytics2030032
APA StyleGuzey, G. E., & Onoz, B. (2023). Streamflow Estimation through Coupling of Hieararchical Clustering Analysis and Regression Analysis—A Case Study in Euphrates-Tigris Basin. Analytics, 2(3), 577-591. https://doi.org/10.3390/analytics2030032