Previous Issue
Volume 2, December
 
 

Spectrosc. J., Volume 3, Issue 1 (March 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
26 pages, 7019 KiB  
Article
A Combined Raman Spectroscopy and Chemometrics Study of the Interaction of Water-Soluble Polymers with Microorganisms
by Thomas J. Tewes, Arjana Kaba, Felix H. Schacher and Dirk P. Bockmühl
Spectrosc. J. 2025, 3(1), 7; https://doi.org/10.3390/spectroscj3010007 - 22 Feb 2025
Viewed by 286
Abstract
Optical spectroscopic methods such as Raman spectroscopy offer several advantages for the analysis of water-soluble polymers (WSPs). There is often no need for complex sample preparation, and measurements are usually rapid, mostly non-destructive and no harmful chemicals are required. In this work, we [...] Read more.
Optical spectroscopic methods such as Raman spectroscopy offer several advantages for the analysis of water-soluble polymers (WSPs). There is often no need for complex sample preparation, and measurements are usually rapid, mostly non-destructive and no harmful chemicals are required. In this work, we investigated WSPs and their interaction with bacteria using Raman spectroscopic methods. We analyzed four different WSPs, each with three different molar masses, in solid form using Raman microscopy, and in aqueous solutions using another Raman system designed for measurements in cuvettes, to train predictive models for concentration determination. Thus, we were able to show both the high potential of these approaches, especially for fast and easy investigations both qualitatively and quantitatively, as well as their limitations. Furthermore, we chose one of the molar masses of each tested polymer to carry out extensive Raman spectroscopic investigations with Escherichia coli and Enterococcus faecium, and revealed that bacterial cells exposed to polymers exhibited distinguishable spectral characteristics compared to those not in contact with polymers. Using Raman microscopy combined with partial least squares discriminant analysis (PLS-DA), we effectively distinguished between these groups. Further chemometric analysis indicated potential polymer-induced modifications to the bacterial cell membranes. While this differentiation may partly reflect polymer interactions at the membrane level, it could also correspond to shifts in bacterial growth phases. Together, these findings suggest a complex interplay between polymer exposure and bacterial physiological states. Full article
Show Figures

Figure 1

19 pages, 6803 KiB  
Article
Point-of-Care No-Specimen Diagnostic Platform Using Machine Learning and Raman Spectroscopy: Proof-of-Concept Studies for Both COVID-19 and Blood Glucose
by Allen B. Chefitz, Rohit Singh, Thomas Birch, Yongwu Yang, Arib Hussain and Gabriella Chefitz
Spectrosc. J. 2025, 3(1), 6; https://doi.org/10.3390/spectroscj3010006 - 19 Feb 2025
Viewed by 192
Abstract
Significance: We describe a novel, specimen-free diagnostic platform that can immediately detect both a metabolite (glucose) or an infection (COVID-19) by non-invasively using Raman spectroscopy and machine learning. Aim: Current diagnostic testing for infections and glucose monitoring requires specimens, disease-specific reagents and processing, [...] Read more.
Significance: We describe a novel, specimen-free diagnostic platform that can immediately detect both a metabolite (glucose) or an infection (COVID-19) by non-invasively using Raman spectroscopy and machine learning. Aim: Current diagnostic testing for infections and glucose monitoring requires specimens, disease-specific reagents and processing, and it increases environmental waste. We propose a new hardware–software paradigm by designing and constructing a finger-scanning hardware device to acquire Raman spectroscopy readouts which, by varying the machine learning algorithm to interpret the data, allows for diverse diagnoses. Approach: A total of 455 patients were enrolled prospectively in the COVID-19 study; 148 tested positive and 307 tested negative through nasal PCR testing conducted concurrently with testing using our viral detector. The tests were performed on both outpatients (N = 382) and inpatients (N = 73) at Holy Name Medical Center in Teaneck, NJ, between June 2021 and August 2022. Patients’ fingers were scanned using an 830 nm Raman System and then, using machine learning, processed to provide an immediate result. In a separate study between April 2023 and August 2023, measurements using the same device and scanning a finger were used to detect blood glucose levels. Using a Dexcom sensor and an Accu-Chek device as references, a cross-validation-based regression of 205 observations of blood glucose was performed with a machine learning algorithm. Results: In a five-fold cross-validation analysis (including asymptomatic patients), a machine learning classifier using the Raman spectra as input achieved a specificity for COVID-19 of 0.837 at a sensitivity of 0.80 and an area under receiver operating curve (AUROC) of 0.896. However, when the data were split by time, with training data consisting of observations before 1 July 2022 and test data consisting of observations after it, the model achieved an AUROC of 0.67, with 0.863 sensitivity at a specificity of 0.517. This decrease in AUROC may be due to substantial domain shift as the virus evolves. A similar five-fold cross-validation analysis of Raman glucose detection produces an area under precision–recall curve (AUPR) of 0.58. Conclusions: The combination of Raman spectroscopy, AI/ML, and our patient interface admitting only a patient’s finger and using no specimen offers unprecedented flexibility in introducing new diagnostic tests or adapting existing ones. As the ML algorithm can be iteratively re-trained with new data and the software deployed to field devices remotely, it promises to be a valuable tool for detecting rapidly emerging infectious outbreaks and disease-specific biomarkers, such as glucose. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Figure 1

12 pages, 2722 KiB  
Article
Effect of Dehydration on Light-Adapted States of Bacterial Reaction Centers Studied by Time-Resolved Rapid-Scan FTIR Difference Spectroscopy
by Alberto Mezzetti, Marco Malferrari, Francesco Francia and Giovanni Venturoli
Spectrosc. J. 2025, 3(1), 5; https://doi.org/10.3390/spectroscj3010005 - 1 Feb 2025
Viewed by 484
Abstract
Dehydration is known to affect the rate of electron transfer backreaction from the light-induced charge separation state P+QA to the neutral ground state PQA in photosynthetic bacterial Reaction Centers. On the other hand, a 20 s continuous illumination [...] Read more.
Dehydration is known to affect the rate of electron transfer backreaction from the light-induced charge separation state P+QA to the neutral ground state PQA in photosynthetic bacterial Reaction Centers. On the other hand, a 20 s continuous illumination period has been demonstrated to induce (at 297 K) formation of one or more light-adapted states at different levels of dehydration; these light-adapted states are believed to be related to peculiar response(s) from the protein. In this work, we applied time-resolved rapid-scan FTIR difference spectroscopy to investigate the protein response under dehydrated conditions (RH = 11%) at 281 K both after a flash and under prolonged continuous illumination. Time-resolved FTIR difference spectra recorded after a laser flash show a protein recovery almost synchronous to the electron transfer backreaction P+QA → PQA. Time-resolved FTIR difference spectra recorded after 20.5 s of continuous illumination (RH = 11%, T = 281 K) surprisingly show almost the same kinetics of electron transfer back reaction compared to spectra recorded after a laser flash. This means that the mechanism of formation of a light-adapted stabilized state is less effective compared to the same hydration level at 297 K and to the RH = 76% hydration level (both at 281 K and 297 K). Time-resolved FTIR difference spectra after continuous illumination also suggest that the 1666 cm−1 protein backbone band decays faster than marker bands for the electron transfer back reaction P+QA → PQA. Finally, FTIR double-difference spectra (FTIR difference spectrum recorded after 18.4 s illumination minus flash-induced FTIR difference spectrum) suggest that at RH = 11%, a light-adapted state different from the one observed at RH = 76% is formed. A possible interpretation is that at RH = 11%, the protein response is modified by the fact that only protons can move easily, differently from water molecules, as instead observed for RH = 76%. This probably makes the formation of a real light-adapted P+QA stabilized state at RH = 11% unfeasible. Full article
Show Figures

Figure 1

10 pages, 2543 KiB  
Article
Geometry Change of 1,3-Dicyanobenzene upon Electronic Excitation from a Franck–Condon Fit of Several Fluorescence Emission Spectra
by Jascha Martini, Simran Amar and Michael Schmitt
Spectrosc. J. 2025, 3(1), 4; https://doi.org/10.3390/spectroscj3010004 - 21 Jan 2025
Viewed by 455
Abstract
The change in the geometry of 1,3-dicyanobenzene upon electronic excitation to the lowest excited singlet state has been elucidated by simultaneous Franck–Condon (FC) fits of the fluorescence emission spectra originating from the vibrationless origin and from four vibronic bands. The geometry changes obtained [...] Read more.
The change in the geometry of 1,3-dicyanobenzene upon electronic excitation to the lowest excited singlet state has been elucidated by simultaneous Franck–Condon (FC) fits of the fluorescence emission spectra originating from the vibrationless origin and from four vibronic bands. The geometry changes obtained from the FC fits were compared to the results of ab initio calculations at the SCS-CC2/cc-pVTZ level of theory. We found close agreement between the spectral determination and the theoretical prediction of the geometry changes upon excitation. The aromatic ring opens upon excitation, resulting in a symmetrically distorted structure in the excited state. Full article
Show Figures

Figure 1

9 pages, 2738 KiB  
Article
Optical Gain in Eu-Doped Hybrid Nanocrystals Embedded SiO2-HfO2-ZnO Ternary Glass-Ceramic Waveguides
by Subhabrata Ghosh, Sylvia Turrell, Maurizio Ferrari and Shivakiran Bhaktha B. N.
Spectrosc. J. 2025, 3(1), 3; https://doi.org/10.3390/spectroscj3010003 - 18 Jan 2025
Viewed by 453
Abstract
Rare-earth doped transparent glass-ceramic waveguides are playing a very crucial role in integrated optics. We fabricated ZnO-HfO2 hybrid nanocrystals embedded with 70 SiO2–(30-x) HfO2–x ZnO (x = 0, 2, 5 and 7 mol %) ternary transparent glass-ceramic waveguides [...] Read more.
Rare-earth doped transparent glass-ceramic waveguides are playing a very crucial role in integrated optics. We fabricated ZnO-HfO2 hybrid nanocrystals embedded with 70 SiO2–(30-x) HfO2–x ZnO (x = 0, 2, 5 and 7 mol %) ternary transparent glass-ceramic waveguides doped with 1 mol % Eu-ions. The formation and size of the nanocrystals evolved with an increase in ZnO concentration in the glass-ceramic waveguides. In this context, key factors of such nanocrystals embedded active glass-ceramic waveguides were optical losses and transparency. A lab-built m-line experimental set-up was used for the characterization of the waveguides. On the other hand, optical gain measurements of the Eu-doped hybrid nanocrystals embedded glass-ceramic waveguides were performed using the variable stripe length method. The optical amplification of the waveguides was investigated on the red emission line (5D07F2) of Eu-ions pumped by a 532 nm laser in a stripe-like geometry generated by a cylindrical lens. Here, we report, the optical gain in rare-earth activated glass-ceramic waveguides with nanocrystals of varying sizes formed in the waveguides with increasing ZnO concentration. Full article
Show Figures

Figure 1

10 pages, 1385 KiB  
Brief Report
Integral UV Spectrophotometric Methods for Determination of Clopidogrel Bisulphate and Metamizole Sodium in Rinse Waters from Industrial Equipment
by Pavel Anatolyevich Nikolaychuk
Spectrosc. J. 2025, 3(1), 2; https://doi.org/10.3390/spectroscj3010002 - 16 Jan 2025
Viewed by 470
Abstract
In this paper, methods for the determination of clopidogrel bisulphate and metamizole sodium in rinse waters from industrial equipment, using multiwavelength UV spectrometry and the calculation of areas under curves, are proposed. Spectra were recorded in an aqueous medium without preliminary pH adjustment. [...] Read more.
In this paper, methods for the determination of clopidogrel bisulphate and metamizole sodium in rinse waters from industrial equipment, using multiwavelength UV spectrometry and the calculation of areas under curves, are proposed. Spectra were recorded in an aqueous medium without preliminary pH adjustment. A numerical integration of the spectra was performed in the wavelength range of 210 to 290 nm for clopidogrel bisulphate, and 220 to 320 nm for metamizole sodium. The methods enable the determination of clopidogrel bisulphate and metamizole sodium in solution in the concentration range of 1–100 mg/L, do not require lengthy sample preparation and complex analytical equipment, and are suitable for the routine determination of these drugs in rinse waters from industrial equipment. Full article
Show Figures

Figure 1

12 pages, 1722 KiB  
Article
Development of Interface-Specific Two-Dimensional Vibrational–Electronic (i2D-VE) Spectroscopy for Vibronic Couplings at Interfaces
by Yuqin Qian, Zhi-Chao Huang-Fu, Jesse B. Brown and Yi Rao
Spectrosc. J. 2025, 3(1), 1; https://doi.org/10.3390/spectroscj3010001 - 3 Jan 2025
Viewed by 694
Abstract
Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used [...] Read more.
Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used to extensively study molecular systems, providing unique information such as coherence sensitivity, molecular configurations, enhanced resolution, and correlated states and their dynamics. However, the analogy of interfacial 2D spectroscopy has fallen behind. Our recent work presented interface-specific 2D-EV spectroscopy (i2D-EV). In this work, we develop interface-specific two-dimensional vibrational–electronic spectroscopy (i2D-VE). The fourth-order spectroscopy is based on a Mach–Zehnder IR interferometer that accurately controls the time delay of an IR pump pulse pair for vibrational transitions, followed by broadband interface second-harmonic generation to probe electronic transitions. We demonstrate step-by-step how a fourth-order i2D-VE spectrum of AP3 molecules at the air/water interface was collected and analyzed. The line shape and signatures of i2D-VE peaks reveal solvent correlations and the spectral nature of vibronic couplings. Together, i2D-VE and i2D-EV spectroscopy provide coupling of different behaviors of the vibrational ground state or excited states with electronic states of molecules at interfaces and surfaces. The methodology presented here could also probe dynamic couplings of electronic and vibrational motions at interfaces and surfaces, extending the usefulness of the rich data that are obtained. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop