Techno-Economic Performance Assessment of Malt Dust Derived Biochar Application for Municipal Wastewater Treatment: A Water Reuse Strategy †
Abstract
:1. Introduction
2. Materials and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European (EU) Commission; European Blue Deal. Declerations on Blue Deal; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Cosenza, A.; Gulhan, H.; Mannina, G. Trading-off greenhouse gas emissions and 741/2020 European Union water reuse legislation: An experimental MBR study. Bioresour. Technol. 2023, 388, 129794. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Huang, X.; Guo, R.; Wang, J.; Peng, K.; Zhang, W.; Liu, E. Water–energy–carbon synergies and trade-offs: A daily nexus analysis for wastewater treatment plants. Resour. Conserv. Recycl. 2023, 188, 106712. [Google Scholar]
- Quispe, J.B.; Campos, L.C.; Mašek, O.; Bogush, A. Optimisation of biochar filter for handwashing wastewater treatment and potential treated water reuse for handwashing. J. Water Process. Eng. 2023, 54, 104001. [Google Scholar]
- European (EU) Council. Water Reuse for Agricultural Irrigation: Council Adopts New Rules; European (EU) Council: Brussels, Belgium, 2020. [Google Scholar]
- Qambrani, N.A.; Rahman, M.M.; Won, S. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar]
- Chiappero, M.; Norouzi, O.; Hu, M.; Demichelis, F.; Berruti, F.; Di Maria, F.; Fiore, S. Review of biochar role as additive in anaerobic digestion processes. Renew. Sustain. Energy Rev. 2020, 131, 110037. [Google Scholar] [CrossRef]
- Xie, J.X.; Guo, M.L.; Xie, J.W.; Chang, Y.F.; Mabruk, A.; Zhang, T.C.; Chen, C.J. COD inhibition alleviation and anammox granular sludge stability improvement by biochar addition. J. Clean. Prod. 2022, 345, 131167. [Google Scholar]
- Zhang, L.; Chen, Z.; Zhu, S.; Li, S.; Wei, C. Effects of biochar on anaerobic treatment systems: Some perspectives. Bioresour. Technol. 2022, 367, 128226. [Google Scholar]
- Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.; Zhang, M.; Vithanage, M.; Mandal, S.; Ok, Y.S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 2016, 148, 276–291. [Google Scholar] [PubMed]
- Wu, X.; Zhou, Y.; Liang, M.; Lu, X.; Chen, G.; Zan, F. Insights into the role of biochar on the acidogenic process and microbial pathways in a granular sulfatereducing up-flow sludge bed reactor. Bioresour. Technol. 2022, 355, 127254. [Google Scholar] [CrossRef] [PubMed]
- European (EU) Commission. European Green Deal: A Clean Planet for All (COM (2018) 773). A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Union (EU) Commission. Report on GREEN DEAL Framework and Fit for 55 Legislation Package; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Yu, S.; Zhang, W.; Dong, X.; Wang, F.; Yang, W.; Liu, C.; Chen, D. A review on recent advances of biochar from agricultural and forestry wastes: Preparation, modification and applications in wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 111638. [Google Scholar] [CrossRef]
- Olugbenga, O.S.; Adeleye, P.G.; Oladipupo, S.B.; Adeleye, A.T.; John, K.I. Biomass-derived biochar in wastewater treatment—A circular economy approach. Waste Manag. Bull. 2024, 1, 1–14. [Google Scholar]
- Lin, S.L.; Zhang, H.; Chen, W.H.; Song, M.; Kwon, E.E. Low-temperature biochar production from torrefaction for wastewater treatment: A review. Bioresour. Technol. 2023, 387, 129588. [Google Scholar]
- Kang, K.; Hu, Y.; Khan, I.; He, S.; Fatehi, P. Recent advances in the synthesis and application of magnetic biochar for wastewater treatment. Bioresour. Technol. 2023, 390, 129786. [Google Scholar]
- Qin, X.; Cheng, S.; Xing, B.; Qu, X.; Shi, C.; Meng, W.; Xia, H. Preparation of pyrolysis products by catalytic pyrolysis of poplar: Application of biochar in antibiotic wastewater treatment. Chemosphere 2023, 338, 139519. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L.; Zhu, Y.; Fang, W.; Tan, Y.; He, Z.; Liao, H. Research status, trends, and mechanisms of biochar adsorption for wastewater treatment: A scientometric review. Environ. Sci. Eur. 2024, 36, 25. [Google Scholar] [CrossRef]
- Zhang, R.; Ding, A.; Cai, X.; Bai, L.; Li, G.; Liang, H.; Tang, C.Y. Enhancement of waterborne pathogen removal by functionalized biochar with ε-polylysine″ dynamic arms″: Potential application in ultrafiltration system. Water Res. 2024, 259, 121834. [Google Scholar] [CrossRef] [PubMed]
- Muoghalu, C.C.; Owusu, P.A.; Lebu, S.; Nakagiri, A.; Semiyaga, S.; Iorhemen, O.T.; Manga, M. Biochar as a novel technology for treatment of onsite domestic wastewater: A critical review. Front. Environ. Sci. 2023, 11, 1095920. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of pollutants from wastewater by biochar: A review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar]
- American Public Health Association; American Water Works Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education: Boston, MA, USA, 2014. [Google Scholar]
Parameter | Value |
---|---|
TSS (mg/L) | 221 |
Turbidity (NTU) | 33 |
BOD5 (mg/L) | 415 |
E. coli (Cfu/100 mL) | 55 |
Parameter | Winter | Spring | Summer | Autumn | Class A | Class B |
---|---|---|---|---|---|---|
TSS (mg/L) | 3 | 7.5 | 8 | 5 | ≤10 | ≤35 |
Turbidity (NTU) | 4.5 | 8 | 9.5 | 6 | ≤5 | _ |
BOD5 (mg/L) | 10 | 13 | 15 | 11.5 | ≤10 | ≤25 |
E. coli (Cfu/100 mL) | 0.25 | 1.25 | 2.5 | 0.75 | ≤10 | ≤100 |
Adsorbents | |||
---|---|---|---|
E. coli adsorption | M1 | M2 | M3 |
qe (mmol/g) | 9.41 | 9.00 | 8.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yapıcıoğlu, P.S.; Yeşilnacar, M.İ. Techno-Economic Performance Assessment of Malt Dust Derived Biochar Application for Municipal Wastewater Treatment: A Water Reuse Strategy. Environ. Earth Sci. Proc. 2025, 32, 12. https://doi.org/10.3390/eesp2025032012
Yapıcıoğlu PS, Yeşilnacar Mİ. Techno-Economic Performance Assessment of Malt Dust Derived Biochar Application for Municipal Wastewater Treatment: A Water Reuse Strategy. Environmental and Earth Sciences Proceedings. 2025; 32(1):12. https://doi.org/10.3390/eesp2025032012
Chicago/Turabian StyleYapıcıoğlu, Pelin Soyertaş, and Mehmet İrfan Yeşilnacar. 2025. "Techno-Economic Performance Assessment of Malt Dust Derived Biochar Application for Municipal Wastewater Treatment: A Water Reuse Strategy" Environmental and Earth Sciences Proceedings 32, no. 1: 12. https://doi.org/10.3390/eesp2025032012
APA StyleYapıcıoğlu, P. S., & Yeşilnacar, M. İ. (2025). Techno-Economic Performance Assessment of Malt Dust Derived Biochar Application for Municipal Wastewater Treatment: A Water Reuse Strategy. Environmental and Earth Sciences Proceedings, 32(1), 12. https://doi.org/10.3390/eesp2025032012