Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, Setting, and Intervention
2.2. Assessment of Adverse Effects
2.3. Procedures and Cardiovascular Risk Assessment
2.4. Statistical Analyses
3. Results
3.1. Characteristics of the Participants
3.2. Adverse Effects
3.3. Changes in the Lipid Profile and Other Cardiovascular Risk Factors
3.4. Changes in Serum Inflammatory Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joseph, P.; Leong, D.; McKee, M.; Anand, S.S.; Schwalm, J.D.; Teo, K.; Mente, A.; Yusuf, S. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ. Res. 2017, 121, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Emerging Risk Factors Collaboration; Di Angelantonio, E.; Sarwar, N.; Perry, P.; Kaptoge, S.; Ray, K.K.; Thompson, A.; Wood, A.M.; Lewington, S.; Sattar, N.; et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009, 302, 1993–2000. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.G.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.T.; et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC /AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J. Am. Coll. Cardiol. 2018. [Google Scholar] [CrossRef]
- Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Patti, A.M.; Giglio, R.V.; Cicero, A.F.G.; Atanasov, A.G.; Bajraktari, G.; Bruckert, E.; Descamps, O.; Djuric, D.M.; Ezhov, M.; et al. The role of nutraceuticals in statin intolerant patients. J. Am. Coll. Cardiol. 2018, 72, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Serban, M.C.; Gluba-Brzózka, A.; Mikhailidis, D.P.; Cicero, A.F.; Rysz, J.; Banach, M. Lipid-modifying effects of nutraceuticals: An evidence-based approach. Nutrition 2016, 32, 1179–1192. [Google Scholar] [CrossRef]
- Hunter, P.M.; Hegele, R.A. Functional foods and dietary supplements for the management of dyslipidaemia. Nat. Rev. Endocrinol. 2017, 13, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, V.; Mannarino, M.R.; Sahebkar, A.; Cosentino, T.; Pirro, M. Cholesterol-lowering nutraceuticals affecting vascular function and cardiovascular disease Risk. Curr. Cardiol. Rep. 2018, 20, 53. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid-lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Nutr. Rev. 2017, 75, 731–767. [Google Scholar] [CrossRef] [PubMed]
- Polia, A.; Barbagallo, C.M.; Cicero, A.F.G.; Corsini, A.; Manzato, E.; Trimarco, B.; Bernini, F.; Visioli, F.; Bianchi, A.; Canzone, G.; et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defenses against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 1638, 1639–1696. [Google Scholar]
- Millán, J.; Cicero, A.F.; Torres, F.; Anguera, A. Effects of a nutraceutical combination containing berberine (BRB), policosanol, and red yeast rice (RYR), on lipid profile in hypercholesterolemic patients: A meta-analysis of randomised controlled trials. Clin. Investig. Arterioscler. 2016, 28, 178–187. [Google Scholar] [CrossRef]
- Galli, F.; Azzi, A.; Birringer, M.; Cook-Mills, J.M.; Eggersdorfer, M.; Frank, J.; Cruciani, G.; Lorkowski, S.; Özer, N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017, 102, 16–36. [Google Scholar] [CrossRef]
- Buitrago, F.; Calvo-Hueros, J.I.; Cañón-Barroso, L.; Pozuelos-Estrada, G.; Molina-Martínez, L.; Espigares-Arroyo, M.; Galán-González, J.A.; Lillo-Bravo, F.J. Original and REGICOR Framingham functions in a nondiabetic population of a Spanish health care center: A validation study. Ann. Fam. Med. 2011, 9, 431–438. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.M.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Molina, L.; Sarmiento, M.; Peñafiel, J.; Donaire, D.; Garcia-Aymerich, J.; Gomez, M.; Ble, M.; Ruiz, S.; Frances, A.; Schröder, H.; et al. Validation of the Regicor short physical activity questionnaire for the adult population. PLoS ONE 2017, 12, e0168148. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef] [PubMed]
- Johson, R.; McNutt, P.; MacMahon, S.; Robson, R. Use of the Friedewald formula to estimate LDL-cholesterol in patients with chronic renal failure on dyalisis. Clin. Chem. 1997, 43, 2183–2184. [Google Scholar]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef] [Green Version]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Demonty, I.; Ras, R.T.; van der Knaap, H.C.M.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: A pooled analysis of 12 randomised controlled trials. Eur. J. Nutr. 2013, 52, 153–160. [Google Scholar] [CrossRef]
- Noakes, M.; Clifton, P.; Ntanios, F.; Shrapnel, W.; Record, I.; McInerney, J. An increase in dietary carotenoids when consuming plant sterols or stanols is effective in maintaining plasma carotenoid concentrations. Am. J. Clin. Nutr. 2002, 75, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Ben-Aicha, S.; Diaz, E.; Badimon, L.; Padro, T. Phytosterols and inflammation. Curr. Med. Chem. 2018, 22. [Google Scholar] [CrossRef] [PubMed]
- Ho, X.L.; Liu, J.J.H.; Loke, W.M. Plant sterol-enriched soy milk consumption modulates 5-lipoxygenase, 12-lipoxygenase, and myeloperoxidase activities in healthy adults – a randomized-controlled trial. Free Radic. Res. 2016, 50, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.Z.; Ras, R.T.; Gagliardi, A.C.; Mangili, L.C.; Trautwein, E.A.; Santos, R.D. Effects of phytosterols on markers of inflammation: A systematic review and meta-analysis. Atherosclerosis 2016, 248, 76–83. [Google Scholar] [CrossRef]
- Ras, R.T.; Fuchs, D.; Koppenol, W.P.; Schalkwijk, C.G.; Otten-Hofman, A.; Garczarek, U.; Greyling, A.; Wagner, F.; Trautwein, E.A. Effect of a plant sterol-enriched spread on biomarkers of endothelial dysfunction and low-grade inflammation in hypercholesterolaemic subjects. J. Nutr. Sci. 2016, 5, e44. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Peña, E.; Arderiu, G.; Padró, T.; Slevin, M.; Vilahur, G.; Chiva-Blanch, G. C-reactive protein in atherosclerorsis and angiogenesis. Front. Immunol. 2018, 9, 430. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Ye, Q.; Li, J.; Ju, D.; Zhang, D.; Cooper, R.; Chang, M. Constituents of red yeast rice, a traditional Chinese food and medicine. J. Agric. Food Chem. 2000, 48, 5220–5225. [Google Scholar] [CrossRef]
- Burke, F.M. Red yeast rice for the treatment of dyslipidemia. Curr. Atheroscler. Rep. 2015, 17, 495. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, L.; Jia, Z.; Xin, W.; Yang, S.; Yang, Q.; Wang, L. A meta-analysis of red yeast rice: An effective and relatively safe alternative approach for dyslipidemia. PLoS ONE 2014, 9, e98611. [Google Scholar] [CrossRef]
- Fogacci, F.; Banach, M.; Mikhailidis, D.P.; Bruckert, E.; Toth, P.P.; Watts, G.F.; Reiner, Ž.; Mancini, J.; Rizzo, M.; Mitchenko, O.; et al. Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group; International Lipid Expert Panel (ILEP). Safety of red yeast rice supplementation: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res. 2019, 143, 1–16. [Google Scholar] [CrossRef]
- Halbert, S.C.; French, B.; Gordon, R.Y.; Farrar, J.T.; Schmitz, K.; Morris, P.B.; Thompson, P.D.; Rader, D.J.; Becker, D.J. Tolerability of red yeast rice (2400 mg twice daily) versus pravastatin (20 mg twice daily) in patients with previous statin intolerance. Am. J. Cardiol. 2010, 105, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Int. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef]
- Casas, R.; Estruch, R.; Sacanella, E. Influence of bioactive nutrients on the atherosclerotic process: A review. Nutrients 2018, 10, E1630. [Google Scholar] [CrossRef]
- Ramírez-Expósito, M.J.; Martínez-Martos, J.M. Anti-Inflammatory and antitumor effects of hydroxytyrosol but not oleuropein on experimental glioma in vivo. A putative role for the renin-angiotensin system. Biomedicine 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, A.S.; Margaritis, M.; Lee, R.; Channon, K.; Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: Molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des. 2012, 18, 1519–1530. [Google Scholar] [CrossRef]
- Bäck, M.; Yurdagul, A., Jr.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019. [Google Scholar] [CrossRef]
- Cimaglia, P.; Vieceli Dalla Sega, F.; Vitali, F.; Lodolini, V.; Bernucci, D.; Passarini, G.; Fortini, F.; Marracino, L.; Aquila, G.; Rizzo, P.; et al. Effectiveness of a novel nutraceutical compound containing red yeast rice, polymethoxyflavones and antioxidants in the modulation of cholesterol levels in subjects with hypercholesterolemia and low-moderate cardiovascular risk: The NIRVANA study. Front. Physiol. 2019, 10, 217. [Google Scholar] [CrossRef] [PubMed]
Nutraceutical Combination (n = 20) | Placebo (n = 20) | p * | |
---|---|---|---|
Age, years | 59.3 (9.5) | 63.5 (12.3) | 0.219 |
Women, n (%) | 11 (55) | 16 (80) | 0.088 |
Current smokers, n (%) | 3 (15) | 2 (10) | 0.500 |
Weight, kg | 74.7 (14.6) | 72.0 (17.6) | 0.600 |
Body mass index, kg/m2 | 26.9 (3.8) | 27.3 (4.4) | 0.159 |
Waist circumference, cm | 97.6 (9.6) | 97.1 (10.8) | 0.878 |
Office systolic BP, mm Hg | 125.2 (9.9) | 127.1 (19.8) | 0.562 |
Office diastolic BP, mm Hg | 76.4 (6.7) | 73.0 (11.7) | 0.275 |
Total cholesterol, mmol/L | 6.08 (0.62) | 5.83 (0.47) | 0.175 |
LDL cholesterol, mmol/L | 3.91 (0.55) | 3.71 (0.48) | 0.223 |
HDL cholesterol, mmol/L | 1.44 (0.37) | 1.57 (0.14) | 0.286 |
Triglycerides, mmol/L | 1.53 (0.87) | 1.38 (0.66) | 0.271 |
REGICOR risk scale, n (%) | |||
Low Risk | 12 (60) | 10 (50) | 0.376 |
Moderate Risk | 8 (40) | 10 (50) | |
MedDiet score | 7.6 (2.0) | 8.6 (1.9) | 0.123 |
Nutraceutical Combination (n = 20) | Placebo (n = 20) | p† | |
---|---|---|---|
Glucose, mmol/L | |||
Baseline | 5.1 (4.7 to 5.5) | 5.0 (4.7 to 5.4) | 0.314 |
Change * | −0.28 (−0.26 to 0.37) | 0.05 (−0.08 to 0.44) | 0.341 |
Creatinine, μmol/L | |||
Baseline | 0.70 (0.64 to 0.85) | 0.71 (0.66 to 0.85) | 0.758 |
Change | 0.38 (−3.05 to 5.71) | 0.01 (−2.28 to 5.33) | 0.327 |
AST, μkat/L | |||
Baseline | 0.358 (0.337 to 0.395) | 0.317 (0.283 to 0.367) | 0.096 |
Change | 0.02 (−0.03 to 0.03) | 0.01 (−0.05 to 0.07) | 0.883 |
ALT, μkat/L | |||
Baseline | 0.325 (0.235 to 0.445) | 0.283 (0.233 to 0.358) | 0.414 |
Change | 0.001 (−0.07 to 0.05) | 0.001 (−0.04 to 0.08) | 0.904 |
GGT, μkat/L | |||
Baseline | 0.292 (0.250 to 0.608) | 0.283 (0.233 to 0.525) | 0.863 |
Change | −0.02 (−0.06 to 0.01) | −0.02 (−0.07 to 0.05) | 0.799 |
LDH, μkat/L | |||
Baseline | 2.867 (2.572 to 3.283) | 2.950 (2.683 to 3.383) | 0.863 |
Change | 0.03 (−0.08 to 0.20) | −0.02 (−0.26 to 0.21) | 0.311 |
CK, μkat/L | |||
Baseline | 1.600 (1.353 to 1.958) | 1.383 (1.058 to 1.700) | 0.157 |
Change | 0.06 (−0.17 to 0.23) | −0.13 (−0.41 to 0.16) | 0.253 |
Aldolase, μkat/L | |||
Baseline | 0.063 (0.045 to 0.080) | 0.057 (0.048 to 0.072) | 0.708 |
Change | −0.01 (−0.02 to 0.02) | 0.01 (−0.02 to 0.02) | 0.568 |
Baseline | One Month | Three Months | p Group | p Time | p Interaction | |
---|---|---|---|---|---|---|
Total cholesterol, mmol/L | ||||||
Nutraceutical | 6.07 (5.83 to 6.32) a | 5.38 (5.12 to 5.64) b | 5.22 (5.58 to 6.08) b | 0.326 | <0.001 | <0.001 |
Placebo | 5.83 (5.58 to 6.08) | 5.66 (5.40 to 5.92) | 5.66 (5.38 to 5.94) | |||
LDL-cholesterol, mmol/L | ||||||
Nutraceutical | 3.90 (3.68 to 4.14) a | 3.32 (3.10 to 3.54) b | 3.13 (2.92 to 3.35) b | 0.192 | <0.001 | <0.001 |
Placebo | 3.71 (3.47 to 3.94) | 3.56 (3.34 to 3.78) | 3.59 (3.38 to 3.78) | |||
HDL-cholesterol, mmol/L | ||||||
Nutraceutical | 1.44 (1.26 to 1.62) | 1.47 (1.30 to 1.63) | 1.49 (1.31 to 1.66) | 0.432 | 0.933 | 0.337 |
Placebo | 1.57 (1.40 to 1.75) | 1.55 (1.39 to 1.72) | 1.54 (1.37 to 1.72) | |||
Triglycerides, mmol/L | ||||||
Nutraceutical | 1.53 (1.19 to 1.86) | 1.29 (1.08 to 1.50) | 1.35 (1.11 to 1.60) | 0.251 | 0.058 | 0.507 |
Placebo | 1.26 (0.92 to 1.60) | 1.19 (0.97 to 1.39) | 1.13 (0.89 to 1.38) | |||
Non-HDL-cholesterol, mmol/L | ||||||
Nutraceutical | 4.63 (4.37 to 4.90) a | 3.91 (3.63 to 4.19) b | 3.73 (3.47 to 3.99) b | 0.691 | <0.001 | <0.001 |
Placebo | 4.26 (3.99 to 4.53) | 4.10 (3.83 to 4.38) | 4.11 (3.85 to 4.38) | |||
Apo B, mg/dL | ||||||
Nutraceutical | 116.8 (110.4 to 123.2) a | 102.3 (94.8 to 109.8) b | 101.0 (94.6 to 107.4) b | 0.909 | <0.001 | <0.001 |
Placebo | 108.3 (101.9 to 114.7) | 105.1 (97.6 to 112.7) | 105.1 (98.7 to 111.5) | |||
Apo A1, mg/dL | ||||||
Nutraceutical | 154.4 (144.0 to 164.7) | 160.3 (149.9 to 170.6) | 160.3 (149.5 to 171.0) | 0.251 | 0.226 | 0.338 |
Placebo | 157.1 (146.8 to 167.5) | 157.8 (147.5 to 168.2) | 157.4 (146.6 to 168.1) |
Nutraceutical Combination (n = 20) | Placebo (n = 20) | p * | |
---|---|---|---|
hs-CRP, mg/dL | |||
Baseline | 0.16 (0.04 to 0.45) | 0.13 (0.05 to 0.20) | 0.925 |
Change | −0.01 (−0.14 to 0.03) | 0.04 (−0.02 to 0.16) | 0.021 |
Interleukin-6, pg/mL | |||
Baseline | 1.65 (2.54 to 3.89) | 2.01 (2.65 to 3.82) | 0.512 |
Change | −0.06 (−0.57 to 0.70) | 0.09 (−0.57 to 0.34) | 0.857 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domenech, M.; Casas, R.; Ruiz-León, A.M.; Sobrino, J.; Ros, E.; Estruch, R. Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial. Nutrients 2019, 11, 949. https://doi.org/10.3390/nu11050949
Domenech M, Casas R, Ruiz-León AM, Sobrino J, Ros E, Estruch R. Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial. Nutrients. 2019; 11(5):949. https://doi.org/10.3390/nu11050949
Chicago/Turabian StyleDomenech, Mònica, Rosa Casas, Ana Maria Ruiz-León, Javier Sobrino, Emilio Ros, and Ramon Estruch. 2019. "Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial" Nutrients 11, no. 5: 949. https://doi.org/10.3390/nu11050949
APA StyleDomenech, M., Casas, R., Ruiz-León, A. M., Sobrino, J., Ros, E., & Estruch, R. (2019). Effects of a Novel Nutraceutical Combination (Aquilea Colesterol®) on the Lipid Profile and Inflammatory Biomarkers: A Randomized Control Trial. Nutrients, 11(5), 949. https://doi.org/10.3390/nu11050949