Impact of Juice Extraction Method (Flash Détente vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates under Accelerated Aging Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Rubired Juice Concentrate
2.3. Accelerated Color Stability Testing under Different Treatment Conditions
2.3.1. Commercial Grape Seed Tannin
2.3.2. Acetaldehyde
2.3.3. Acid
2.3.4. Acetaldehyde and Acid
2.3.5. Seed Tannin, Acetaldehyde and Acid
2.3.6. Heat Treatments
2.3.7. Color Degradation Kinetics
2.4. Compositional Analysis of Rubired Juice Concentrate
2.4.1. Color Analysis
2.4.2. Phenolic Analysis
2.4.3. 5-Hydroxymethylfurfural Analysis
2.5. Sediment Quantification and Testing
2.6. Statistical Analysis
3. Results and Discussion
3.1. Red Color Stability
3.2. Violet Color Stability
3.3. Anthocyanins and Pigmented Polymers
3.4. Brown Color Evolution
3.5. Impact of Treatments on Concentrate Quality Indicators
3.5.1. 5-Hydroxymethylfurfural (5-HMF) Formation
3.5.2. trans-Caftaric Acid and 2-S-Glutathionyl Caftaric Acid (Grape Reaction Product)
3.5.3. Proanthocyanidin, Gallic Acid, and Quercetin Glycosides
3.5.4. Sediment Formation
3.6. Color Degradation Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E.; et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. Lancet 2007, 370, 1560–1567. [Google Scholar] [CrossRef]
- Morris, J.R.; Sistrunk, W.A.; Junek, J.; Sims, C.A. Effects of fruit maturity, juice storage, and juice extraction temperature on quality of ‘Concord’ grape juice. J. Am. Soc. Hortic. Sci. 1986, 111, 742–746. [Google Scholar]
- Tiwari, B.K.; O’Donnell, C.P.; Cullen, P.J. Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci. Technol. 2009, 20, 137–145. [Google Scholar] [CrossRef]
- Cabrera, S.G.; Jang, J.H.; Kim, S.T.; Lee, Y.R.; Lee, H.J.; Chung, H.S.; Moon, K.D. Effects of processing time and temperature on the quality components of Campbell grape juice. J. Food Process. Pres. 2009, 33, 347–360. [Google Scholar] [CrossRef]
- Skalski, C.; Sistrunk, W.A. Factors influencing color degradation in Concord grape juice. J. Food Sci. 1973, 38, 1060–1062. [Google Scholar] [CrossRef]
- Somers, T.C. Pigment profiles of grapes and wines. Vitis 1968, 7, 303–320. [Google Scholar] [CrossRef]
- Maza, M.; Álvarez, I.; Raso, J. Thermal and non-thermal physical methods for improving polyphenol extraction in red winemaking. Beverages 2019, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Bordignon-Luiz, M.T.; Gauche, C.; Gris, E.F.; Falcão, L.D. Colour stability of anthocyanins from Isabel grapes (Vitis labrusca L.) in model systems. LWT Food Sci. Technol. 2007, 40, 594–599. [Google Scholar] [CrossRef]
- Dyrby, M.; Westergaard, N.; Stapelfeldt, H. Light and heat sensitivity of red cabbage extract in soft drink model systems. Food Chem. 2001, 72, 431–437. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Laurie, V.F. Oxidation of wine phenolics: A critical evaluation and hypotheses. Am. J. Enol. Vitic. 2006, 57, 306–313. [Google Scholar]
- Hubbermann, E.M.; Heins, A.; Stöckmann, H.; Schwarz, K. Influence of acids, salt, sugars and hydrocolloids on the colour stability of anthocyanin rich black currant and elderberry concentrates. Eur. Food Res. Technol. 2006, 223, 83–90. [Google Scholar] [CrossRef]
- Sacchi, K.L.; Bisson, L.F.; Adams, D.O. A review of the effect of winemaking techniques on phenolic extraction in red wines. Am. J. Enol. Vitic. 2005, 56, 197–206. [Google Scholar]
- Sims, C.A.; Morris, J.R. A comparison of the color components and color stability of red wine from Noble and Cabernet Sauvignon at various pH levels. Am. J. Enol. Vitic. 1985, 36, 181–184. [Google Scholar]
- Brenes, C.H.; Del Pozo-Insfran, D.; Talcott, S.T. Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system. J. Agric. Food Chem. 2005, 53, 49–56. [Google Scholar] [CrossRef]
- Bąkowska, A.; Kucharska, A.Z.; Oszmiański, J. The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex. Food Chem. 2003, 81, 349–355. [Google Scholar] [CrossRef]
- Mazza, G.; Brouillard, R. Recent developments in the stabilization of anthocyanins in food products. Food Chem. 1987, 25, 207–225. [Google Scholar] [CrossRef]
- Mazza, G.; Brouillard, R. The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry 1990, 29, 1097–1102. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Carrillo, M.; Díaz, E.; Boulton, R.B. Enhancement of red wine colour by pre-fermentation addition of copigments. Food Chem. 2001, 73, 217–220. [Google Scholar] [CrossRef]
- Davies, A.J.; Mazza, G. Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J. Agric. Food Chem. 1993, 41, 716–720. [Google Scholar] [CrossRef]
- Fulcrand, H.; Benabdeljalil, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 1998, 47, 1401–1407. [Google Scholar] [CrossRef]
- Es-Safi, N.E.; Le Guernevé, C.; Labarbe, B.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Structure of a new xanthylium salt derivative. Tetrahedron Lett. 1999, 40, 5869–5872. [Google Scholar] [CrossRef]
- Don, L.Z. The Impact of consumer demands and trends on food processing. Emerg. Infect. Dis. 1997, 3, 467–469. [Google Scholar] [CrossRef]
- Processes Authorized for the Treatment of Wine, Juice, and Distilling Material, in Code of Federal Regulations: 27 CFR § 24.248. 2019: USA. Available online: https://www.govinfo.gov/content/pkg/CFR-2019-title27-vol1/pdf/CFR-2019-title27-vol1-sec24-248.pdf (accessed on 22 May 2020).
- Instructions §52,2462 on Absorbence and Absorbency Ratio, in United States Department of Agriculture Standards for Grades of Frozen Concentrated Sweetened Grape Juice. 1957: USA. Available online: https://www.ams.usda.gov/sites/default/files/media/Frozen_Concentrated_Grape_Juice_Standard%5B1%5D.pdf (accessed on 18 August 2020).
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Prida, A.; Chatonnet, P. Impact of oak-derived compounds on the olfactory perception of varrel-aged wines. Am. J. Enol. Vitic. 2010, 61, 408–413. [Google Scholar]
- Harbertson, J.F.; Parpinello, G.P.; Heymann, H.; Downey, M.O. Impact of exogenous tannin additions on wine chemistry and wine sensory character. Food Chem. 2012, 131, 999–1008. [Google Scholar] [CrossRef]
- Parker, M.; Smith, P.A.; Birse, M.; Francis, I.L.; Kwiatkowski, M.J.; Lattey, K.A.; Liebich, B.; Herderich, M.J. The effect of pre- and post-ferment additions of grape derived tannin on Shiraz wine sensory properties and phenolic composition. Aust. J. Grape Wine Res. 2007, 13, 30–37. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; García-Estévez, I.; Ferreras-Charro, R.; Rivas-Gonzalo, J.C.; Ferrer-Gallego, R.; Escribano-Bailón, M.T. Adding oenological tannin vs. overripe grapes: Effect on the phenolic composition of red wines. J. Food Compos. Anal. 2014, 34, 99–113. [Google Scholar] [CrossRef]
- Romero, C.; Bakker, J. Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions. J. Agric. Food Chem. 1999, 47, 3130–3139. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
- Pinho, C.; Melo, A.; Mansilha, C.; Ferreira, I.M. Optimization of conditions for anthocyanin hydrolysis from red wine using response surface methodology (RSM). J. Agric. Food Chem. 2011, 59, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Ichiyanagi, T.; Oikawa, K.; Tateyama, C.; Konishi, T. Acid mediated hydrolysis of blueberry anthocyanins. Chem. Pharm. Bull. 2000, 49, 114–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentzsch, M.; Schwarz, M.; Winterhalter, P. Pyranoanthocyanins—An overview on structures, occurrence, and pathways of formation. Trends Food Sci. Technol. 2007, 18, 526–534. [Google Scholar] [CrossRef]
- Morata, A.; Calderón, F.; González, M.C.; Gómez-Cordovés, M.C.; Suárez, J.A. Formation of the highly stable pyranoanthocyanins (vitisins A and B) in red wines by the addition of pyruvic acid and acetaldehyde. Food Chem. 2007, 100, 1144–1152. [Google Scholar] [CrossRef]
- Bakker, J.; Timberlake, C.F. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem. 1997, 45, 35–43. [Google Scholar] [CrossRef]
- Smith, R.M.; Luh, B.S. Anthocyanin pigments in the hybrid grape variety Rubired. J. Food Sci. 1965, 30, 995–1005. [Google Scholar] [CrossRef]
- Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of anthocyanins in grape juices by ion trap liquid chromatography−mass spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Francia-Aricha, E.M.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.C. Contribution to the identification of the pigments responsible for the browning of anthocyanin-flavanol solutions. Eur. Food Res. Technol. 1999, 209, 411–415. [Google Scholar] [CrossRef]
- Es-Safı, N.-E.; Le Guernevé, C.; Fulcrand, H.; Cheynier, V.; Moutounet, M. New polyphenolic compounds with xanthylium skeletons formed through reaction between (+)-catechin and glyoxylic acid. J. Agric. Food Chem. 1999, 47, 5211–5217. [Google Scholar] [CrossRef]
- Es-Safi, N.-E.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Studies on the acetaldehyde-induced condensation of (−)-epicatechin and malvidin 3-O-glucoside in a model solution system. J. Agric. Food Chem. 1999, 47, 2096–2102. [Google Scholar] [CrossRef] [PubMed]
- Cerrutti, P.; Resnik, S.L.; Seldes, A.; Fontan, C.F. Kinetics of deteriorative reactions in model food systems of high water activity: Glucose loss, 5-hydroxymethylfurfural accumulation and fluorescence development due to nonenzymatic browning. J. Food Sci. 1985, 50, 627–630. [Google Scholar] [CrossRef]
- Renn, P.T.; Sathe, S.K. Effects of pH, temperature, and reactant molar ratio on L-leucine and D-glucose Maillard browning reaction in an aqueous system. J. Agric. Food Chem. 1997, 45, 3782–3787. [Google Scholar] [CrossRef]
- Del Pilar Buera, M.; Chirife, J.; Resnik, S.L.; Wetzler, G. Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to Maillard’s reaction between different single sugars and glycine and comparison with caramelization browning. J. Food Sci. 1987, 52, 1063–1067. [Google Scholar] [CrossRef]
- Bozkurt, H.; Göğüş, F.; Eren, S. Nonenzymic browning reactions in boiled grape juice and its models during storage. Food Chem. 1999, 64, 89–93. [Google Scholar] [CrossRef]
- Es-Safi, N.-E.; Cheynier, V.; Moutounet, M. Study of the reactions between (+)-catechin and furfural derivatives in the presence or absence of anthocyanins and their implication in food color change. J. Agric. Food Chem. 2000, 48, 5946–5954. [Google Scholar] [CrossRef]
- Hodge, J.E. Dehydrated foods, chemistry of browning reactions in model systems. J. Agric. Food Chem. 1953, 1, 928–943. [Google Scholar] [CrossRef]
- Tosun, I. Color changes and 5-hydroxymethyl furfural formation in zile pekmezi during storage. Grasas Aceites 2004, 55, 259–263. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Singleton, V.L.; Salgues, M.; Zaya, J.; Trousdale, E. Caftaric acid disappearance and conversion to products of enzymic oxidation in grape must and wine. Am. J. Enol. Vitic. 1985, 36, 50–56. [Google Scholar]
- Fortea, M.I.; López-Miranda, S.; Serrano-Martínez, A.; Carreño, J.; Núñez-Delicado, E. Kinetic characterisation and thermal inactivation study of polyphenol oxidase and peroxidase from table grape (Crimson Seedless). Food Chem. 2009, 113, 1008–1014. [Google Scholar] [CrossRef]
- Cheynier, V.F.; Trousdale, E.K.; Singleton, V.L.; Salgues, M.J.; Wylde, R. Characterization of 2-S-glutathionyl caftaric acid and its hydrolysis in relation to grape wines. J. Agric. Food Chem. 1986, 34, 217–221. [Google Scholar] [CrossRef]
- Saucier, C.; Bourgeois, G.; Vitry, C.; Roux, D.; Glories, Y. Characterization of (+)-catechin-acetaldehyde polymers: A model for colloidal state of wine polyphenols. J. Agric. Food Chem. 1997, 45, 1045–1049. [Google Scholar] [CrossRef]
- Singleton, V.L.; Trousdale, E. White wine phenolics: Varietal and processing differences as shown by HPLC. Am. J. Enol. Vitic. 1983, 34, 27–34. [Google Scholar]
- Hemingway, R.W.; McGraw, G.W. Kinetics of acid-catalyzed cleavage of procyanidins. J. Wood Chem. Technol. 1983, 3, 421–435. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Baranowski, E.S.; Nagel, C.W. Kinetics of malvidin-3-glucoside condensation in wine model systems. J. Food Sci. 1983, 48, 419–421. [Google Scholar] [CrossRef]
Concentrate | Accelerated Aging Temperature | ||||||||
---|---|---|---|---|---|---|---|---|---|
50 °C | 60 °C | 70 °C | |||||||
Red | Violet | Brown | Red | Violet | Brown | Red | Violet | Brown | |
CMH | −47.3 | −11.0 | −17.0 | −64.3 | −21.9 | −3.0 | −69.4 | −41.2 | 77.4 |
FD | −52.1 | −10.7 | −22.9 | −68.8 | −24.2 | 6.9 | −72.4 | −39.4 | 74.6 |
Means | p Values | Model Adjusted R2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
CMH | FD | Concentrate Type | Treatment | Time (days) | Concentrate Type × Treatment | Concentrate Type × Time | Treatment × Time | Concentrate Type × Treatment × Time | ||
Red color (%) | 82.0 | 79.7 | 0.0005 | 0.0005 | 0.0005 | 0.201 | 0.007 | 0.0005 | 0.894 | 98.80% |
Brown color (%) | 98.5 | 99.0 | 0.242 | 0.0005 | 0.0005 | 0.0005 | 0.140 | 0.0005 | 0.0005 | 97.21% |
Violet color (%) | 110.1 | 114.1 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 98.79% |
Brown index | 0.56 | 0.49 | 0.0005 | 0.0005 | 0.0005 | 0.005 | 0.050 | 0.0005 | 0.417 | 98.00% |
Violet index | 0.46 | 0.43 | 0.0005 | 0.0005 | 0.0005 | 0.001 | 0.034 | 0.0005 | 0.500 | 98.72% |
5-Hydroxymethylfurfural (%) | 9300 | 1900 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.001 | 0.062 | 92.09% |
Malvidin-3,5-O-diglucoside (%) | 68.2 | 69.6 | 0.043 | 0.0005 | 0.0005 | 0.940 | 0.123 | 0.001 | 0.806 | 98.39% |
Malvidin-3-O-glucoside (%) | 52.3 | 53.0 | 0.398 | 0.0005 | 0.0005 | 0.961 | 0.308 | 0.0005 | – | 99.04% |
Pigmented polymers (%) | 131.2 | 158.2 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 99.36% |
Caftaric acid (%) | 116.0 | 109.8 | 0.0005 | 0.0005 | 0.0005 | 0.018 | 0.0005 | 0.007 | 0.726 | 93.26% |
Epicatechin (%) | 38.9 | 39.2 | 0.870 | 0.245 | 0.0005 | 0.219 | – | – | – | 98.48% |
Gallic acid (%) | 132.9 | 150.5 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 97.43% |
Grape reaction product (%) | 88.3 | 89.6 | 0.002 | 0.001 | 0.0005 | 0.350 | 0.132 | 0.058 | 0.998 | 96.92% |
Proanthocyanidins (%) | 126.8 | 128.1 | 0.086 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.002 | 98.30% |
Quercetin glycosides (%) | 87.0 | 89.2 | 0.0005 | 0.0005 | 0.0005 | 0.527 | 0.005 | 0.0005 | 0.855 | 97.14% |
Treatment | Temperature | CMH | FD | ||||||
---|---|---|---|---|---|---|---|---|---|
Red Color | Violet Color | Brown Color | Brown Index | Red Color | Violet Color | Brown Color | Brown Index | ||
Acetaldehyde + low pH | 50 °C | 1534 a | 865 a | 981 a | 0.64 c | 1685 a | 920 a | 959 ab | 0.57 c |
Seed tannin + acetaldehyde + low pH | 1531 a | 877 a | 988 a | 0.65 bc | 1711 a | 937 a | 1007 a | 0.59 bc | |
Low pH | 1352 b | 711 c | 860 bc | 0.64 c | 1445 b | 692 b | 794 c | 0.55 c | |
Acetaldehyde | 1255 c | 784 b | 911 ab | 0.73 ab | 1394 b | 877 a | 934 b | 0.67 a | |
Control | 1017 d | 569 d | 735 d | 0.73 ab | 1039 c | 558 c | 655 d | 0.63 ab | |
Seed tannin | 1017 d | 567 d | 773 cd | 0.79 a | 1063 c | 568 c | 703 d | 0.66 a | |
Acetaldehyde + low pH | 60 °C | 1068 a | 749 a | 1092 a | 1.03 d | 1136 a | 764 a | 1053 a | 0.93 c |
Seed tannin + acetaldehyde + low pH | 1026 b | 711 b | 1051 a | 1.03 d | 1123 a | 752 a | 1029 ab | 0.92 c | |
Low pH | 895 c | 644 c | 989 b | 1.10 c | 942 b | 651 b | 946 b | 1.01 b | |
Acetaldehyde | 905 c | 657 c | 1046 ab | 1.16 b | 981 b | 692 ab | 982 ab | 1.00 b | |
Control | 688 d | 499 d | 913 c | 1.33 a | 677 c | 474 c | 790 c | 1.17 a | |
Seed tannin | 697 d | 502 d | 928 c | 1.33 a | 689 c | 483 c | 793 c | 1.15 a | |
Acetaldehyde + low pH | 70 °C | 658 a | 421 a | 1569 a | 2.38 b | 698 a | 446 a | 1497 a | 2.15 b |
Seed tannin + acetaldehyde + low pH | 591 b | 376 b | 1572 a | 2.66 a | 599 b | 379 b | 1482 ab | 2.470 a | |
Low pH | 577 b | 368 b | 1510 b | 2.60 a | 595 b | 379 b | 1428 b | 2.40 a | |
Acetaldehyde | 452 c | 304 c | 947 c | 2.10 c | 523 c | 340 c | 1007 c | 1.93 c | |
Control | 418 cd | 277 c | 893 d | 2.14 c | 498 cd | 325 c | 953 c | 1.92 c | |
Seed tannin | 404 d | 276 c | 919 cd | 2.28 b | 457 d | 308 c | 970 c | 2.12 b |
Treatment | Temperature | Malvidin-3,5-O-diglucoside | Pigmented Polymers | Malvidin-3-O-glucoside | Proanthocyanidins | Gallic Acid | Quercetin Glycosides | trans-Caftaric Acid | GRP |
---|---|---|---|---|---|---|---|---|---|
Control | 50 °C | 2098 ab | 104 b | 79 c | 1293 b | 37 a | 154 abc | 106 a | 44 a |
Seed tannin | 2142 a | 109 b | 90 bc | 1418 b | 41 a | 157 ab | 108 a | 45 a | |
Acetaldehyde | 1801 cd | 243 a | 29 d | 2072 a | 36 a | 138 d | 108 a | 43 a | |
Low pH | 1839 bc | 139 b | 241 a | 1541 b | 22 b | 160 a | 100 b | 46 a | |
Acetaldehyde + low pH | 1539 de | 246 a | 135 b | 1970 a | 21 b | 150 bc | 100 b | 46 a | |
Seed Tannin + acetaldehyde + low pH | 1436 e | 253 a | 119 bc | 2197 a | 27 b | 145 cd | 99 b | 45 a | |
Control | 60 °C | 431 a | 99 d | 42 c | 1883 e | 43 b | 83 abc | 97 a | 29 a |
Seed tannin | 439 a | 101 d | 43 c | 2030 e | 49 a | 84 ab | 96 a | 29 a | |
Acetaldehyde | 377 b | 169 b | 18 d | 2479 d | 41 b | 73 d | 95 a | 29 a | |
Low pH | 157 c | 149 c | 139 a | 2965 c | 31 cd | 88 a | 81 b | 30 a | |
Acetaldehyde + low pH | 127 c | 211 a | 72 b | 3250 b | 28 d | 81 bc | 81 b | 30 a | |
Seed tannin + acetaldehyde + low pH | 124 c | 220 a | 67 b | 3589 a | 34 c | 79 c | 80 b | 30 a | |
Control | 70 °C | 51 a | 148 c | nd | 4605 b | 36 a | 16 a | 79 b | 28 a |
Seed tannin | 48 ab | 139 d | nd | 4637 b | 42 a | 15 a | 82 a | 28 a | |
Acetaldehyde | 45 b | 183 a | nd | 5092 a | 36 a | 15 a | 83 a | 28 a | |
Low pH | 30 c | 137 d | nd | 4462 b | 37 a | 18 a | 58 c | 22 b | |
Acetaldehyde + low pH | 29 c | 177 a | nd | 4910 a | 41 a | 17 a | 59 c | 24 ab | |
Seed Tannin + acetaldehyde + low pH | 29 c | 164 b | nd | 4525 b | 44 a | 17 a | 59 c | 22 b |
Concentrate Type | Reaction Order | Rate Constant (k) at 50 °C | Half Life (h) at 50 °C | Activation Energy (kJ/mol) | Q10 | |
---|---|---|---|---|---|---|
Red color | CMH | 1 | 4.9 × 10−5 | 233.9 | 65.2 | 1.61 |
FD | 5.7 × 10−5 | 203.3 | 59.2 | 1.58 | ||
Brown index | CMH | 0 | 2.0 × 10−5 | 187.5 | 224.7 | 3.26 |
FD | 1.9 ×10−5 | 175.5 | 229.3 | 3.25 | ||
Violet color | CMH | 0 | 5.4 × 10−3 | 992.4 | 141.3 | 2.02 |
FD | 5.1 × 10−3 | 1012.0 | 138.4 | 2.27 | ||
Malvidin-3,5-O-diglucoside | CMH | 1 | 7.2 × 10−5 | 161.2 | 171.7 | 2.87 |
FD | 6.6 × 10−5 | 175.1 | 177.8 | 2.85 | ||
Malvidin-3-O-glucoside | CMH | 1 | 1.8 × 10−4 | 65.4 | - | 2.93 |
FD | 1.8 × 10−4 | 63.6 | - | 2.66 | ||
Quercetin glycosides | CMH | 1 | 2.6 × 10−5 | 437.1 | 213.3 | 2.70 |
FD | 2.2 × 10−5 | 531.2 | 233.5 | 3.17 | ||
Proanthocyanidins | CMH | 0 | 2.5 × 10−2 | 421.8 | 240.3 | 2.86 |
FD | 1.8 × 10−2 | 509.3 | 291.9 | 3.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntuli, R.G.; Ponangi, R.; Jeffery, D.W.; Wilkinson, K.L. Impact of Juice Extraction Method (Flash Détente vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates under Accelerated Aging Conditions. Foods 2020, 9, 1270. https://doi.org/10.3390/foods9091270
Ntuli RG, Ponangi R, Jeffery DW, Wilkinson KL. Impact of Juice Extraction Method (Flash Détente vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates under Accelerated Aging Conditions. Foods. 2020; 9(9):1270. https://doi.org/10.3390/foods9091270
Chicago/Turabian StyleNtuli, Richard G., Ravi Ponangi, David W. Jeffery, and Kerry L. Wilkinson. 2020. "Impact of Juice Extraction Method (Flash Détente vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates under Accelerated Aging Conditions" Foods 9, no. 9: 1270. https://doi.org/10.3390/foods9091270
APA StyleNtuli, R. G., Ponangi, R., Jeffery, D. W., & Wilkinson, K. L. (2020). Impact of Juice Extraction Method (Flash Détente vs. Conventional Must Heating) and Chemical Treatments on Color Stability of Rubired Juice Concentrates under Accelerated Aging Conditions. Foods, 9(9), 1270. https://doi.org/10.3390/foods9091270