Track Detection of Resident Space Objects

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Astronautics & Space Science".

Deadline for manuscript submissions: closed (31 January 2024) | Viewed by 1276

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Space Sciences and Astronomy, University of Malta, L-Università ta' Malta, Msida MSD 2080, Malta
Interests: radio astronomy; space surveillance and tracking; signal and image processing; high performance and GPU computing

Special Issue Information

Dear Colleagues,

As humanity’s endeavours in space continue to expand and evolve, the space around our planet is becoming an increasingly vital and contested domain. The burgeoning population of Resident Space Objects (RSOs), including operational satellites, defunct satellites, rocket bodies, and debris, poses a considerable challenge to the safety and sustainability of space operations. This edition invites submissions on cutting-edge techniques and technologies focused on track detection of RSOs in Earth's orbit. With the escalation of space activities and the consequent growth in the number of RSOs, precise tracking is paramount for collision avoidance and mission safety. We encourage submissions that explore advancements in a wide spectrum of instruments, including phased array radars, optical telescopes, in-orbits systems and others. We are particularly interested in studies on the incorporation of machine learning algorithms in data processing for faster and more reliable tracking of RSO trajectories. Through this Special Issue, we aim to foster a deeper understanding and stimulate further innovation in the field of RSO tracking.

Prof. Dr. Alessio Magro
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • track detection
  • streak detection
  • resident space objects
  • space debris
  • low earth orbit
  • machine learning
  • satellite tracking
  • space surveillance
  • space situational awareness
  • space safety
  • orbit determination
  • radar systems
  • optical systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 2095 KiB  
Article
Operational Angular Track Reconstruction in Space Surveillance Radars through an Adaptive Beamforming Approach
by Marco Felice Montaruli, Maria Alessandra De Luca, Mauro Massari, Germano Bianchi and Alessio Magro
Aerospace 2024, 11(6), 451; https://doi.org/10.3390/aerospace11060451 - 1 Jun 2024
Viewed by 988
Abstract
In the last few years, many space surveillance initiatives have started to consider the problem represented by resident space object overpopulation. In particular, the European Space Surveillance and Tracking (EUSST) consortium is in charge of providing services like collision avoidance, fragmentation analysis, and [...] Read more.
In the last few years, many space surveillance initiatives have started to consider the problem represented by resident space object overpopulation. In particular, the European Space Surveillance and Tracking (EUSST) consortium is in charge of providing services like collision avoidance, fragmentation analysis, and re-entry, which rely on measurements obtained through ground-based sensors. BIRALES is an Italian survey radar belonging to the EUSST framework and is capable of providing measurements including Doppler shift, slant range, and angular profile. In recent years, the Music Approach for Track Estimate and Refinement (MATER) algorithm has been developed to retrieve angular tracks through an adaptive beamforming technique, guaranteeing the generation of more accurate and robust measurements with respect to the previous static beamforming approach. This work presents the design of a new data processing chain to be used by BIRALES to compute the angular track. The signal acquired by the BIRALES receiver array is down-converted and the receiver bandwidth is split into multiple channels, in order to maximize the signal-to-noise ratio of the measurements. Then, the signal passes through a detection block, where an isolation procedure creates, for each epoch, signal correlation matrices (CMs) related to the channels involved in the detection and then processes them to isolate the data stream related to a single detected source. Consequently, for each epoch and for each detected source, just the CM featuring the largest signal contribution is kept, allowing deriving the Doppler shift measurement from the channel illumination sequence. The MATER algorithm is applied to each CM stream, first estimating the signal directions of arrival, then grouping them in the observation time window, and eventually returning the target angular track. Ambiguous estimates may be present due to the configuration of the receiver array, which cause spatial aliasing phenomena. This problem can be addressed by either exploiting transit prediction (in the case of cataloged objects), or by applying tailored criteria (for uncatalogued objects). The performance of the new architecture was assessed in real operational scenarios, demonstrating the enhancement represented by the implementation of the channelization strategy, as well as the angular measurement accuracy returned by MATER, in both nominal and off-nominal scenarios. Full article
(This article belongs to the Special Issue Track Detection of Resident Space Objects)
Show Figures

Figure 1

Back to TopTop