Conventional and Alternative Fertilization of Crops

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Soil and Plant Nutrition".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 577

Special Issue Editors


E-Mail Website
Guest Editor
Department of Agriculture and Waste Management, University of Rzeszów, St. Ćwiklinskiej 1a, 35-601 Rzeszów, Poland
Interests: sustainable agriculture; soil fertility; fertilizers; organic farming; vermicomposting

E-Mail Website
Guest Editor
Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland
Interests: agronomy; agriculture; agrotechnics; nutrients; fertilization; crop plants; seed quality
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Mineral fertilizers have transformed agriculture by delivering nutrients in readily available forms, leading to substantial yield improvements. However, their overuse has caused environmental issues such as soil degradation, water pollution, and greenhouse gas emissions. Organic fertilizers, rich in humus and beneficial microorganisms, enhance soil structure and provide sustained fertility. A combined approach integrating mineral and organic fertilizers balances high crop performance with environmental sustainability.

This Special Issue focuses on innovative fertilization strategies, emphasizing the synergy between mineral and organic inputs and advancements in precision agriculture, such as soil and yield mapping, to optimize nutrient management. Topics include the environmental impacts of fertilization, nutrient cycling, and integrated approaches to enhance soil health and productivity.

We seek research articles, reviews, and case studies addressing comparative fertilizer analyses, precision fertilization technologies, and sustainable practices. Contributions should aim to advance interdisciplinary solutions for sustainable crop production and soil management.

Dr. Anita Zapałowska
Dr. Wacław Jarecki
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mineral fertilization
  • organic fertilization
  • integrated nutrient management
  • soil health
  • crop productivity
  • precision agriculture
  • fertilizer optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 3615 KiB  
Article
Impact of Polymer-Coated Controlled-Release Fertilizer on Maize Growth, Production, and Soil Nitrate in Sandy Soils
by Morgan Morrow, Vivek Sharma, Rakesh K. Singh, Jonathan Adam Watson, Gabriel Maltais-Landry and Robert Conway Hochmuth
Agronomy 2025, 15(2), 455; https://doi.org/10.3390/agronomy15020455 - 13 Feb 2025
Viewed by 389
Abstract
Polymer-coated controlled-release fertilizers’ (CRFs) unique nutrient release mechanism has the potential to mitigate the leaching of mobile soil nutrients, such as nitrate-nitrogen (NO3-N). The study aimed to evaluate the capacity of a polymer-coated CRFs to maintain maize (Zea mays L.) [...] Read more.
Polymer-coated controlled-release fertilizers’ (CRFs) unique nutrient release mechanism has the potential to mitigate the leaching of mobile soil nutrients, such as nitrate-nitrogen (NO3-N). The study aimed to evaluate the capacity of a polymer-coated CRFs to maintain maize (Zea mays L.) crop growth/health indicators and production goals, while reducing NO3-N leaching risks compared to conventional (CONV) fertilizers in North Florida. Four CRF rates (168, 224, 280, 336 kg N ha−1) were assessed against a no nitrogen (N) application and the current University of Florida Institute for Food and Agricultural Sciences (UF/IFAS) recommended CONV (269 kg N ha−1) fertilizer rate. All CRF treatments, even the lowest CRF rate (168 kg N ha−1), produced yields, leaf tissue N concentrations, plant heights, aboveground biomasses (AGB), and leaf area index (LAI) significantly (p < 0.05) greater than or similar to the CONV fertilizer treatment. Additionally, in 2022, the CONV fertilizer treatment resulted in increases in late-season movement of soil NO3-N into highly leachable areas of the soil profile (60–120 cm), while none of the CRF treatments did. However, back-to-back leaching rainfall (>76.2 mm over three days) events in the 2023 growing season masked any trends as NO3-N was likely completely flushed from the system. The results of this two-year study suggest that polymer-coated CRFs can achieve desirable crop growth, crop health, and production goals, while also having the potential to reduce the late-season leaching potential of NO3-N; however, more research is needed to fully capture and quantify the movement of NO3-N through the soil profile. Correlation and Principal Component Analysis (PCA) revealed that CRF performance was significantly influenced by environmental factors such as rainfall and temperature. In 2022, temperature-driven nitrogen release aligned with crop uptake, supporting higher yields and minimizing NO3-N movement. In 2023, however, rainfall-driven variability led to an increase in NO3-N leaching and masked the benefits of CRF treatments. These analyses provided critical insights into the relationships between environmental factors and CRF performance, emphasizing the importance of adaptive fertilizer management under varying climatic conditions. Full article
(This article belongs to the Special Issue Conventional and Alternative Fertilization of Crops)
Show Figures

Figure 1

Back to TopTop