Novel Strategies and Technologies for the Development of Tumor-Specific Antibodies

A special issue of Antibodies (ISSN 2073-4468). This special issue belongs to the section "Antibody Discovery and Engineering".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 22238

Special Issue Editor


E-Mail Website
Guest Editor
Link Cell Therapies, 201 Haskins Way, Suite 210, South San Francisco, CA 94080, USA
Interests: antibody drug conjugates; biophysical characterization; novel target validation

Special Issue Information

Dear Colleagues, 

In this Special Issue, we aim to compile a set of references and techniques that will support the generation of antibodies specific to tumor targeting and that fulfill appropriate therapeutic potential.

Antibody drug conjugates require target binders that support internalization, whereas antibody effector function requires sustained localization to the cell membrane to accomplish robust activity. Approaches for monoclonal antibodies and bispecific antibodies including immune cell engagers are also welcomed.  Antibody characterization will also be addressed, and understanding the range of affinities (<0.1–50 nm), kinetics, domain/bin binding, among other properties, should be explained.  How this is completed through in vivo and in vitro antibody discovery will serve as the backbone of this issue. 

Dr. Alexander J. Bankovich
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibodies is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hybridoma
  • antibody discovery
  • immunizations
  • display technologies
  • effector function
  • monoclonal antibodies
  • bispecific antibodies

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3888 KiB  
Article
A Novel Anti-CD47 Nanobody Tetramer for Cancer Therapy
by Nataliya M. Ratnikova, Yulia Kravchenko, Anna Ivanova, Vladislav Zhuchkov, Elena Frolova and Stepan Chumakov
Antibodies 2024, 13(1), 2; https://doi.org/10.3390/antib13010002 - 02 Jan 2024
Viewed by 2084
Abstract
CD47 acts as a defense mechanism for tumor cells by sending a “don’t eat me” signal via its bond with SIRPα. With CD47’s overexpression linked to poor cancer outcomes, its pathway has become a target in cancer immunotherapy. Though monoclonal antibodies offer specificity, [...] Read more.
CD47 acts as a defense mechanism for tumor cells by sending a “don’t eat me” signal via its bond with SIRPα. With CD47’s overexpression linked to poor cancer outcomes, its pathway has become a target in cancer immunotherapy. Though monoclonal antibodies offer specificity, they have limitations like the large size and production costs. Nanobodies, due to their small size and unique properties, present a promising therapeutic alternative. In our study, a high-affinity anti-CD47 nanobody was engineered from an immunized alpaca. We isolated a specific VHH from the phage library, which has nanomolar affinity to SIRPα, and constructed a streptavidin-based tetramer. The efficacy of the nanobody and its derivative was evaluated using various assays. The new nanobody demonstrated higher affinity than the monoclonal anti-CD47 antibody, B6H12.2. The nanobody and its derivatives also stimulated substantial phagocytosis of tumor cell lines and induced apoptosis in U937 cells, a response confirmed in both in vitro and in vivo settings. Our results underscore the potential of the engineered anti-CD47 nanobody as a promising candidate for cancer immunotherapy. The derived nanobody could offer a more effective, cost-efficient alternative to conventional antibodies in disrupting the CD47–SIRPα axis, opening doors for its standalone or combinatorial therapeutic applications in oncology. Full article
Show Figures

Figure 1

15 pages, 3440 KiB  
Article
Profiling the Biophysical Developability Properties of Common IgG1 Fc Effector Silencing Variants
by Robert Pejchal, Anthony B. Cooper, Michael E. Brown, Maximiliano Vásquez and Eric M. Krauland
Antibodies 2023, 12(3), 54; https://doi.org/10.3390/antib12030054 - 22 Aug 2023
Cited by 2 | Viewed by 3055
Abstract
Therapeutic antibodies represent the most significant modality in biologics, with around 150 approved drugs on the market. In addition to specific target binding mediated by the variable fragments (Fvs) of the heavy and light chains, antibodies possess effector functions through binding of the [...] Read more.
Therapeutic antibodies represent the most significant modality in biologics, with around 150 approved drugs on the market. In addition to specific target binding mediated by the variable fragments (Fvs) of the heavy and light chains, antibodies possess effector functions through binding of the constant region (Fc) to Fcγ receptors (FcγR), which allow immune cells to attack and kill target cells using a variety of mechanisms. However, for some applications, including T-cell-engaging bispecifics, this effector function is typically undesired. Mutations within the lower hinge and the second constant domain (CH2) of IgG1 that comprise the FcγR binding interface reduce or eliminate effector function (“Fc silencing”) while retaining binding to the neonatal Fc receptor (FcRn), important for normal antibody pharmacokinetics (PKs). Comprehensive profiling of biophysical developability properties would benefit the choice of constant region variants for development. Here, we produce a large panel of representative mutations previously described in the literature and in many cases in clinical or approved molecules, generate select combinations thereof, and characterize their binding and biophysical properties. We find that some commonly used CH2 mutations, including D265A and P331S, are effective in reducing binding to FcγR but significantly reduce stability, promoting aggregation, particularly under acidic conditions commonly employed in manufacturing. We highlight mutation sets that are particularly effective for eliminating Fc effector function with the retention of WT-like stability, including L234A, L235A, and S267K (LALA-S267K), L234A, L235E, and S267K (LALE-S267K), L234A, L235A, and P329A (LALA-P329A), and L234A, L235E, and P329G (LALE-P329G). Full article
Show Figures

Figure 1

14 pages, 2257 KiB  
Article
Suppression of MUC1-Overexpressing Tumors by a Novel MUC1/CD3 Bispecific Antibody
by Jun Fang, Shifa Lai, Haoyang Yu and Lan Ma
Antibodies 2023, 12(3), 47; https://doi.org/10.3390/antib12030047 - 13 Jul 2023
Cited by 3 | Viewed by 2175
Abstract
Mucin1 (MUC1) is abnormally glycosylated and overexpressed in a variety of epithelial cancers and plays a critical role in tumor progression. MUC1 has received remark attention as an oncogenic molecule and is considered a valuable tumor target for immunotherapy, while many monoclonal antibodies [...] Read more.
Mucin1 (MUC1) is abnormally glycosylated and overexpressed in a variety of epithelial cancers and plays a critical role in tumor progression. MUC1 has received remark attention as an oncogenic molecule and is considered a valuable tumor target for immunotherapy, while many monoclonal antibodies (mAbs) targeting MUC1-positive cancers in clinical studies lack satisfactory results. It would be highly desirable to develop an effective therapy against MUC1-expressing cancers. In this study, we constructed a novel T cell-engaging bispecific antibody (BsAb) targeting MUC1 and CD3 with the Fab-ScFv-IgG format. A high quality of MUC1-CD3 BsAb can be acquired through a standard method. Our study suggested that this BsAb could specifically bind to MUC1- and CD3-positive cells and efficiently enhance T cell activation, cytokine release, and cytotoxicity. Furthermore, our study demonstrated that this BsAb could potently redirect T cells to eliminate MUC1-expressing tumor cells in vitro and significantly suppress MUC1-positive tumor growth in a xenograft mouse model. Thus, T cell-engaging MUC1/CD3 BsAb could be an effective therapeutic approach to combat MUC1-positive tumors and our MUC1/CD3 BsAb could be a promising candidate in clinical applications for the treatment of MUC1-positive cancer patients. Full article
Show Figures

Figure 1

16 pages, 2808 KiB  
Article
Development of a Novel Anti-CD44 Variant 5 Monoclonal Antibody C44Mab-3 for Multiple Applications against Pancreatic Carcinomas
by Yuma Kudo, Hiroyuki Suzuki, Tomohiro Tanaka, Mika K. Kaneko and Yukinari Kato
Antibodies 2023, 12(2), 31; https://doi.org/10.3390/antib12020031 - 28 Apr 2023
Cited by 7 | Viewed by 2406
Abstract
Pancreatic cancer exhibits a poor prognosis due to the lack of early diagnostic biomarkers and the resistance to conventional chemotherapy. CD44 has been known as a cancer stem cell marker and plays tumor promotion and drug resistance roles in various cancers. In particular, [...] Read more.
Pancreatic cancer exhibits a poor prognosis due to the lack of early diagnostic biomarkers and the resistance to conventional chemotherapy. CD44 has been known as a cancer stem cell marker and plays tumor promotion and drug resistance roles in various cancers. In particular, the splicing variants are overexpressed in many carcinomas and play essential roles in the cancer stemness, invasiveness or metastasis, and resistance to treatments. Therefore, the understanding of each CD44 variant’s (CD44v) function and distribution in carcinomas is essential for the establishment of CD44-targeting tumor therapy. In this study, we immunized mice with CD44v3–10-overexpressed Chinese hamster ovary (CHO)-K1 cells and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-3; IgG1, kappa) recognized peptides of the variant-5-encoded region, indicating that C44Mab-3 is a specific mAb for CD44v5. Moreover, C44Mab-3 reacted with CHO/CD44v3–10 cells or pancreatic cancer cell lines (PK-1 and PK-8) by flow cytometry. The apparent KD of C44Mab-3 for CHO/CD44v3–10 and PK-1 was 1.3 × 10−9 M and 2.6 × 10−9 M, respectively. C44Mab-3 could detect the exogenous CD44v3–10 and endogenous CD44v5 in Western blotting and stained the formalin-fixed paraffin-embedded pancreatic cancer cells but not normal pancreatic epithelial cells in immunohistochemistry. These results indicate that C44Mab-3 is useful for detecting CD44v5 in various applications and is expected to be useful for the application of pancreatic cancer diagnosis and therapy. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 728 KiB  
Review
The Role of Antibody-Based Therapies in Neuro-Oncology
by Rishab Ramapriyan, Jing Sun, Annabel Curry, Leland G. Richardson, Tarun Ramesh, Matthew A. Gaffey, Patrick C. Gedeon, Elizabeth R. Gerstner, William T. Curry and Bryan D. Choi
Antibodies 2023, 12(4), 74; https://doi.org/10.3390/antib12040074 - 13 Nov 2023
Cited by 1 | Viewed by 2327
Abstract
This review explores the evolving landscape of antibody-based therapies in neuro-oncology, in particular, immune checkpoint inhibitors and immunomodulatory antibodies. We discuss their mechanisms of action, blood-brain barrier (BBB) penetration, and experience in neuro-oncological conditions. Evidence from recent trials indicates that while these therapies [...] Read more.
This review explores the evolving landscape of antibody-based therapies in neuro-oncology, in particular, immune checkpoint inhibitors and immunomodulatory antibodies. We discuss their mechanisms of action, blood-brain barrier (BBB) penetration, and experience in neuro-oncological conditions. Evidence from recent trials indicates that while these therapies can modulate the tumor immune microenvironment, their clinical benefits remain uncertain, largely due to challenges with BBB penetration and tumor-derived immunosuppression. This review also examines emerging targets such as TIGIT and LAG3, the potential of antibodies in modulating the myeloid compartment, and tumor-specific targets for monoclonal antibody therapy. We further delve into advanced strategies such as antibody–drug conjugates and bispecific T cell engagers. Lastly, we explore innovative techniques being investigated to enhance antibody delivery, including CAR T cell therapy. Despite current limitations, these therapies hold significant therapeutic potential for neuro-oncology. Future research should focus on optimizing antibody delivery to the CNS, identifying novel biological targets, and discovering combination therapies to address the hostile tumor microenvironment. Full article
Show Figures

Figure 1

13 pages, 1476 KiB  
Review
Conditionally Active, pH-Sensitive Immunoregulatory Antibodies Targeting VISTA and CTLA-4 Lead an Emerging Class of Cancer Therapeutics
by F. Donelson Smith, Robert H. Pierce, Thomas Thisted and Edward H. van der Horst
Antibodies 2023, 12(3), 55; https://doi.org/10.3390/antib12030055 - 30 Aug 2023
Cited by 1 | Viewed by 3300
Abstract
Immune checkpoints and other immunoregulatory targets can be difficult to precisely target due to expression on non-tumor immune cells critical to maintaining immune homeostasis in healthy tissues. On-target/off-tumor binding of therapeutics results in significant pharmacokinetic and pharmacodynamic problems. Target-mediated drug disposition (TMDD) significantly [...] Read more.
Immune checkpoints and other immunoregulatory targets can be difficult to precisely target due to expression on non-tumor immune cells critical to maintaining immune homeostasis in healthy tissues. On-target/off-tumor binding of therapeutics results in significant pharmacokinetic and pharmacodynamic problems. Target-mediated drug disposition (TMDD) significantly limits effective intratumoral drug levels and adversely affects anti-tumor efficacy. Target engagement outside the tumor environment may lead to severe immune-related adverse events (irAEs), resulting in a narrowing of the therapeutic window, sub-optimal dosing, or cessation of drug development altogether. Overcoming these challenges has become tractable through recent advances in antibody engineering and screening approaches. Here, we review the discovery and development of conditionally active antibodies with minimal binding to target at physiologic pH but high-affinity target binding at the low pH of the tumor microenvironment by focusing on the discovery and improved properties of pH-dependent mAbs targeting two T cell checkpoints, VISTA and CTLA-4. Full article
Show Figures

Figure 1

13 pages, 623 KiB  
Review
The Role of Bispecific Antibodies in Relapsed Refractory Multiple Myeloma: A Systematic Review
by Razwana Khanam, Omer S. Ashruf, Syed Hamza Bin Waqar, Zunairah Shah, Saba Batool, Rameesha Mehreen, Pranali Pachika, Zinath Roksana, Mohammad Ebad Ur Rehman and Faiz Anwer
Antibodies 2023, 12(2), 38; https://doi.org/10.3390/antib12020038 - 29 May 2023
Cited by 4 | Viewed by 3254
Abstract
Multiple myeloma is a heterogeneous clonal malignant plasma cell disorder, which remains incurable despite the therapeutic armamentarium’s evolution. Bispecific antibodies (BsAbs) can bind simultaneously to the CD3 T-cell receptor and tumor antigen of myeloma cells, causing cell lysis. This systematic review of phase [...] Read more.
Multiple myeloma is a heterogeneous clonal malignant plasma cell disorder, which remains incurable despite the therapeutic armamentarium’s evolution. Bispecific antibodies (BsAbs) can bind simultaneously to the CD3 T-cell receptor and tumor antigen of myeloma cells, causing cell lysis. This systematic review of phase I/II/III clinical trials aimed to analyze the efficacy and safety of BsAbs in relapsed refractory multiple myeloma (RRMM). A thorough literature search was performed using PubMed, Cochrane Library, EMBASE, and major conference abstracts. A total of 18 phase I/II/III studies, including 1283 patients, met the inclusion criteria. Among the B-cell maturation antigen (BCMA)-targeting agents across 13 studies, the overall response rate (ORR) ranged between 25% and 100%, with complete response/stringent complete response (CR/sCR) between 7 and 38%, very good partial response (VGPR) between 5 and 92%, and partial response (PR) between 5 and 14%. Among the non-BCMA-targeting agents across five studies, the ORR ranged between 60 and 100%, with CR/sCR seen in 19–63%, and VGPR in 21–65%. The common adverse events were cytokine release syndrome (17–82%), anemia (5–52%), neutropenia (12–75%), and thrombocytopenia (14–42%). BsAbs have shown promising efficacy against RRMM cohorts with a good safety profile. Upcoming phase II/III trials are much awaited, along with the study of other agents in concert with BsAbs to gauge response. Full article
Show Figures

Figure 1

16 pages, 606 KiB  
Review
Cutaneous Lymphoma and Antibody-Directed Therapies
by Alvise Sernicola, Christian Ciolfi, Paola Miceli and Mauro Alaibac
Antibodies 2023, 12(1), 21; https://doi.org/10.3390/antib12010021 - 03 Mar 2023
Cited by 1 | Viewed by 2549
Abstract
The introduction of monoclonal antibodies such as rituximab to the treatment of cancer has greatly advanced the treatment scenario in onco-hematology. However, the response to these agents may be limited by insufficient efficacy or resistance. Antibody–drug conjugates are an attractive strategy to deliver [...] Read more.
The introduction of monoclonal antibodies such as rituximab to the treatment of cancer has greatly advanced the treatment scenario in onco-hematology. However, the response to these agents may be limited by insufficient efficacy or resistance. Antibody–drug conjugates are an attractive strategy to deliver payloads of toxicity or radiation with high selectivity toward malignant targets and limited unwanted effects. Primary cutaneous lymphomas are a heterogeneous group of disorders and a current area of unmet need in dermato-oncology due to the limited options available for advanced cases. This review briefly summarizes our current understanding of T and B cell lymphomagenesis, with a focus on recognized molecular alterations that may provide investigative therapeutic targets. The authors reviewed antibody-directed therapies investigated in the setting of lymphoma: this term includes a broad spectrum of approaches, from antibody–drug conjugates such as brentuximab vedotin, to bi-specific antibodies, antibody combinations, antibody-conjugated nanotherapeutics, radioimmunotherapy and, finally, photoimmunotherapy with specific antibody–photoadsorber conjugates, as an attractive strategy in development for the future management of cutaneous lymphoma. Full article
Show Figures

Figure 1

Back to TopTop