applsci-logo

Journal Browser

Journal Browser

Intelligent Optical Signal Processing in Optical Fiber Communication

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Optics and Lasers".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 1401

Special Issue Editor


E-Mail Website
Guest Editor
College of Electronic and Information Engineering, Tongji University, Shanghai, China
Interests: optical waveguide; optical fiber; free space optical communication; optical fiber communication
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Optical signal processing has emerged as a significant topic in optical fiber communications, further boosting the system capacity. The linear and nonlinear penalties, such as the fiber dispersion, polarization mode dispersion, and fiber nonlinearity, which pose certain limitations for signal transmission, can be readily overcome via the use of advanced signal processing techniques. Intelligent signal processing aims to exploit the upcoming artificial intelligence tide in order to achieve the more efficient and low-cost realization of the signal processing target.

This Special Issue focuses on, but is not limited to, the theory, algorithms, and experimental realization of intelligent optical signal processing, with the aim of sharing the state-of-the-art technology with the broader research community.

Prof. Dr. Junhe Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • optical signal processing
  • optical fiber communication
  • optical communication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 2926 KiB  
Article
Mitigating Security Vulnerabilities in 6G Networks: A Comprehensive Analysis of the DMRN Protocol Using SVO Logic and ProVerif
by Ilsun You, Jiyoon Kim, I Wayan Adi Juliawan Pawana and Yongho Ko
Appl. Sci. 2024, 14(21), 9726; https://doi.org/10.3390/app14219726 - 24 Oct 2024
Viewed by 1044
Abstract
The rapid evolution of mobile and optical communication technologies is driving the transition from 5G to 6G networks. This transition inevitably brings about changes in authentication scenarios, as new security demands emerge that go beyond the capabilities of existing frameworks. Therefore, it is [...] Read more.
The rapid evolution of mobile and optical communication technologies is driving the transition from 5G to 6G networks. This transition inevitably brings about changes in authentication scenarios, as new security demands emerge that go beyond the capabilities of existing frameworks. Therefore, it is necessary to address these evolving requirements and the associated key challenges: ensuring Perfect Forward Secrecy (PFS) to protect communications even if long-term keys are compromised and integrating Post-Quantum Cryptography (PQC) techniques to defend against the threats posed by quantum computing. These are essential for both radio and optical communications, which are foundational elements of future 6G infrastructures. The DMRN Protocol, introduced in 2022, represents a major advancement by offering both PFS and PQC while maintaining compatibility with existing 3rd Generation Partnership Project (3GPP) standards. Given the looming quantum-era challenges, it is imperative to analyze the protocol’s security architecture through formal verification. Accordingly, we formally analyze the DMRN Protocol using SVO logic and ProVerif to assess its effectiveness in mitigating attack vectors, such as malicious or compromised serving networks (SNs) and home network (HN) masquerading. Our research found that the DMRN Protocol has vulnerabilities in key areas such as mutual authentication and key exchange. In light of these findings, our study provides critical insights into the design of secure and quantum-safe authentication protocols for the transition to 6G networks. Furthermore, by identifying the vulnerabilities in and discussing countermeasures to address the DMRN Protocol, this study lays the groundwork for the future standardization of secure 6G Authentication and Key Agreement protocols. Full article
(This article belongs to the Special Issue Intelligent Optical Signal Processing in Optical Fiber Communication)
Show Figures

Figure 1

Back to TopTop