Engine Emissions: Assessment and Control

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Air Pollution Control".

Deadline for manuscript submissions: closed (12 July 2024) | Viewed by 4493

Special Issue Editors

College of Energy and Power Engineering, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
Interests: energy saving and purification technology of vehicle power system; fuel system flow and simulation

E-Mail Website
Guest Editor
College of Energy and Power Engineering, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
Interests: flow and combustion of fuel system and exhaust system; emission detection and control

Special Issue Information

Dear Colleagues,

Engine emission is one of the key sources of air pollution. Although the electric drive of the power system is a major developmental direction, the engine still has advantages and potential that cannot be ignored compared with the electric drive, and it is still widely used in automobiles, trains, ships and aerospace. Therefore, under the tide of power system electric drive, it is very meaningful to carry out research on engine emission and control.

This Special Issue covers all kinds of engine emission and control technology research, encouraging the application of exhaust emission control technology for motor vehicles, non-road mobile machinery, marine engines, clean fuel technology, and artificial intelligence technology in emission control research.

Dr. Yan Lei
Prof. Dr. Tao Qiu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • internal combustion engines
  • motorcycle
  • non-road mobile machinery
  • marine engine
  • clean fuel
  • artificial intelligence technology in emission control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 612 KiB  
Article
The Environmental Consequences of Engine Emissions in Air and Road Transport
by Kristína Kováčiková, Andrej Novák, Alena Novák Sedláčková and Martina Kováčiková
Atmosphere 2024, 15(8), 903; https://doi.org/10.3390/atmos15080903 - 29 Jul 2024
Viewed by 921
Abstract
This study evaluated the environmental consequences of engine emissions from road and air transport on three commonly traveled routes between Berlin and the cities of Frankfurt, Paris, and Barcelona. The focus was on CO2 emissions due to their significant impact on climate [...] Read more.
This study evaluated the environmental consequences of engine emissions from road and air transport on three commonly traveled routes between Berlin and the cities of Frankfurt, Paris, and Barcelona. The focus was on CO2 emissions due to their significant impact on climate change. By collecting and analyzing comprehensive data on vehicle and aircraft emissions, this study aimed to compare the CO2 output of each transport mode under different passenger load scenarios. The findings indicate that air transport is generally more efficient in terms of CO2 emissions per passenger for longer distances. For instance, the CO2 emissions per passenger ranged from 22.6 kg to 79.8 kg for air transport and from 64.7 kg to 220.8 kg for road transport, demonstrating reductions of approximately 65% to 72%. This study underscores the importance of considering both distance and passenger load when evaluating the environmental impact of different transport modes and highlights the need for a multifaceted approach to reducing transport emissions, including technological innovations, policy interventions, and behavioral changes. Full article
(This article belongs to the Special Issue Engine Emissions: Assessment and Control)
Show Figures

Figure 1

21 pages, 2622 KiB  
Article
Particulate and Gaseous Emissions from a Large Two-Stroke Slow-Speed Marine Engine Equipped with Open-Loop Scrubber under Real Sailing Conditions
by Achilleas Grigoriadis, Nikolaos Kousias, Anastasios Raptopoulos-Chatzistefanou, Håkan Salberg, Jana Moldanová, Anna-Lunde Hermansson, Yingying Cha, Anastasios Kontses, Zisimos Toumasatos, Sokratis Mamarikas and Leonidas Ntziachristos
Atmosphere 2024, 15(7), 845; https://doi.org/10.3390/atmos15070845 - 17 Jul 2024
Viewed by 1279
Abstract
Particulate and gaseous emissions were studied from a large two-stroke slow-speed diesel engine equipped with an open-loop scrubber, installed on a 78,200 metric tonnes (deadweight) containership, under real operation. This paper presents the on-board emission measurements conducted upstream and downstream of the scrubber [...] Read more.
Particulate and gaseous emissions were studied from a large two-stroke slow-speed diesel engine equipped with an open-loop scrubber, installed on a 78,200 metric tonnes (deadweight) containership, under real operation. This paper presents the on-board emission measurements conducted upstream and downstream of the scrubber with heavy fuel oil (HFO) and ultra-low sulfur fuel oil (ULSFO). Particle emissions were examined under various dilution ratios and temperature conditions, and with two thermal treatment setups, involving a thermodenuder (TD) and a catalytic stripper (CS). Our results show a 75% SO2 reduction downstream of the scrubber with the HFO to emission-compliant levels, while the use of the ULSFO further decreased SO2 levels. The operation of the scrubber produced higher particle number levels compared to engine-out, attributed to the condensational growth of nanometer particle cores, salt and the formation of sulfuric acid particles in the smaller size range, induced by the scrubber. The use of a TD and a CS eliminates volatiles but can generate new particles when used in high-sulfur conditions. The results of this study contribute to the generally limited understanding of the particulate and gaseous emission performance of open-loop scrubbers in ships and could feed into emission and air quality models for estimating marine pollution impacts. Full article
(This article belongs to the Special Issue Engine Emissions: Assessment and Control)
Show Figures

Figure 1

18 pages, 6280 KiB  
Article
Experimental Research on Regulated and Unregulated Emissions from E20-Fuelled Vehicles and Hybrid Electric Vehicles
by Tao Qiu, Yakun Zhao, Yan Lei, Zexun Chen, Dongdong Guo, Fulu Shi and Tao Wang
Atmosphere 2024, 15(6), 669; https://doi.org/10.3390/atmos15060669 - 31 May 2024
Viewed by 637
Abstract
Ethanol as a renewable fuel has been applied in fuel vehicles (FVs), and it is promising in hybrid electric vehicles (HEVs). This work aims to investigate the emission characteristics of ethanol applied in both FVs and plug-in hybrid electric vehicles (PHEVs). The paper [...] Read more.
Ethanol as a renewable fuel has been applied in fuel vehicles (FVs), and it is promising in hybrid electric vehicles (HEVs). This work aims to investigate the emission characteristics of ethanol applied in both FVs and plug-in hybrid electric vehicles (PHEVs). The paper conducted a real-road test of an internal combustion FV and PHEV, respectively, based on the world light vehicle test cycle (WLTC) by using gasoline and regular gasoline under different temperature conditions. The use of E10 and E20 in FVs has been effective in reducing the conventional emissions of the vehicles. At 23 °C, E10 and E20 reduced the conventional emissions including carbon monoxide (CO), total hydrocarbon compound (THC), non-methane hydrocarbon compound (NMHC), particulate matter (PM), and particulate number (PN) by 15.40–31.11% and 11.00–44.13% respectively. At 6 °C, E10 and E20 reduced conventional emissions including THC, CO, and PM by 2.15–8.61% and 11.02–13.34%, respectively. However, nitrogen oxide (NOX) emissions increased to varying degrees. The reduction trend of non-conventional emissions including methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) from FVs fueled with E10 and E20 is not significant for vehicles. Overall, the emission reduction effect of E20 is better than that of E10, and the emission reduction effect of ethanol gasoline on vehicle emissions is reduced at low temperatures. Lower ambient temperatures increase vehicle emissions in the low-speed segment but decrease vehicle emissions in the ultra-high-speed segment. HEV emissions of THC, CO, PN, and PM are reduced by 25.28%, 12.72%, 77.34%, and 64.59%, respectively, for E20 compared to gasoline, and the use of E20 in HEVs contributes to the reduction of overall vehicle emissions. Full article
(This article belongs to the Special Issue Engine Emissions: Assessment and Control)
Show Figures

Figure 1

19 pages, 4186 KiB  
Article
Experimental Study on Evaporation and Micro-Explosion Characteristics of Ethanol and Diesel Blended Droplets
by Yixuan Zhang, Kesheng Meng, Lin Bao, Qizhao Lin and Svitlana Pavlova
Atmosphere 2024, 15(5), 604; https://doi.org/10.3390/atmos15050604 - 15 May 2024
Viewed by 1124
Abstract
In this study, the constant temperature control system of a heating plate was established, ethanol–diesel fuel with different proportions was prepared, and a series of experiments were carried out. The experimental system was used to observe, summarize, and analyze four evaporation and crushing [...] Read more.
In this study, the constant temperature control system of a heating plate was established, ethanol–diesel fuel with different proportions was prepared, and a series of experiments were carried out. The experimental system was used to observe, summarize, and analyze four evaporation and crushing modes of mixed droplets, which were explosion, liquid filament stretching, exocytosis, and ejection mode. The evaporation process of four kinds of mixed droplets in their life cycle was analyzed by normalizing the diameter square. It was proposed that the evaporation process of droplets could be divided into the following three stages: a heating stage, a fluctuating evaporation stage, and an equilibrium evaporation stage. It was also pointed out that the expansion, ejection, and micro-explosion of droplets were the causes of fluctuating evaporation. The concept of expansion and crushing intensity was put forward and the expansion and crushing intensity of ethanol/diesel mixed droplets with different proportions were calculated. The reasons why expansion and crushing intensity first increased and decreased with the increase in ethanol blending ratio were analyzed. Finally, the time proportion of ethanol–diesel mixed droplets in each evaporation stage was calculated, which explained that the time proportion of the instantaneous heating stage showed a parabolic law with the increase in ethanol content. Full article
(This article belongs to the Special Issue Engine Emissions: Assessment and Control)
Show Figures

Graphical abstract

Back to TopTop