Recent Advances in Fractional Calculus

A special issue of Axioms (ISSN 2075-1680). This special issue belongs to the section "Mathematical Analysis".

Deadline for manuscript submissions: closed (31 July 2023) | Viewed by 20774

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Applied Pedagogy, Juhász Gyula Faculty of Education, University of Szeged, H-6725 Szeged, Hungary
Interests: mathematical analysis; convex functions; fractional integrals
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5450, Corrientes 3400, Argentina
Interests: fractional calculus; generalized calculus; integral inequalities; qualitative theory of ordinary differential equations
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

One of the fundamental characteristics of fractional calculus is its two-sided character: on the one hand, it is an area as old as classical calculus (of integer order), and on the other it is up-to-date, making it one of the most dynamic areas of mathematical sciences today. In fact, in recent decades there has been an increase in the number of researchers and publications related to this topic. This increase can be observed in both pure and applied mathematics, in a wide range of areas: from biological models to integral inequalities, through q-calculus, to the study of delayed, neutral, hybrid systems etc. It is interesting that the interaction between specialists from different areas and the mathematicians themselves has provided results that were unthinkable years ago.

All the above means that we can work not only with integral operators of Riemann–Liouville type, but also with differential operators of Caputo or Riemann–Liouville type and their generalizations, with q-calculus operators, with generalized local operators, which gives us the possibility of studying and analyzing phenomena of a very different nature, in a wide variety of problems.

We cordially invite researchers to contribute their original and high-quality research papers in the above topics.

Dr. Péter Kórus
Prof. Dr. Juan Eduardo Nápoles Valdes
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Axioms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fractional calculus
  • q-calculus
  • fractional integral and differential operators
  • fractional differential equation
  • fractional integral equation
  • integral inequalities

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

3 pages, 171 KiB  
Editorial
Recent Advances in Fractional Calculus
by Péter Kórus and Juan Eduardo Nápoles Valdés
Axioms 2024, 13(5), 310; https://doi.org/10.3390/axioms13050310 - 8 May 2024
Viewed by 1016
Abstract
This Special Issue of the scientific journal Axioms, entitled “Recent Advances in Fractional Calculus”, is dedicated to one of the most dynamic areas of mathematical sciences today [...] Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)

Research

Jump to: Editorial

8 pages, 221 KiB  
Article
Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications
by Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis and Asma Hanif
Axioms 2024, 13(2), 114; https://doi.org/10.3390/axioms13020114 - 8 Feb 2024
Cited by 3 | Viewed by 1207
Abstract
In this work, we initially derive an integral identity that incorporates a twice-differentiable function. After establishing the recently created identity, we proceed to demonstrate some new Hermite–Hadamard–Mercer-type inequalities for twice-differentiable convex functions. Additionally, it demonstrates that the recently introduced inequalities have extended certain [...] Read more.
In this work, we initially derive an integral identity that incorporates a twice-differentiable function. After establishing the recently created identity, we proceed to demonstrate some new Hermite–Hadamard–Mercer-type inequalities for twice-differentiable convex functions. Additionally, it demonstrates that the recently introduced inequalities have extended certain pre-existing inequalities found in the literature. Finally, we provide applications to the newly established inequalities to verify their usefulness. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
26 pages, 405 KiB  
Article
Some New Bullen-Type Inequalities Obtained via Fractional Integral Operators
by Asfand Fahad, Saad Ihsaan Butt, Bahtiyar Bayraktar, Mehran Anwar and Yuanheng Wang
Axioms 2023, 12(7), 691; https://doi.org/10.3390/axioms12070691 - 16 Jul 2023
Cited by 11 | Viewed by 2004
Abstract
In this paper, we establish a new auxiliary identity of the Bullen type for twice-differentiable functions in terms of fractional integral operators. Based on this new identity, some generalized Bullen-type inequalities are obtained by employing convexity properties. Concrete examples are given to illustrate [...] Read more.
In this paper, we establish a new auxiliary identity of the Bullen type for twice-differentiable functions in terms of fractional integral operators. Based on this new identity, some generalized Bullen-type inequalities are obtained by employing convexity properties. Concrete examples are given to illustrate the results, and the correctness is confirmed by graphical analysis. An analysis is provided on the estimations of bounds. According to calculations, improved Hölder and power mean inequalities give better upper-bound results than classical inequalities. Lastly, some applications to quadrature rules, modified Bessel functions and digamma functions are provided as well. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
Show Figures

Figure 1

18 pages, 339 KiB  
Article
New Applications of Faber Polynomials and q-Fractional Calculus for a New Subclass of m-Fold Symmetric bi-Close-to-Convex Functions
by Mohammad Faisal Khan, Suha B. Al-Shaikh, Ahmad A. Abubaker and Khaled Matarneh
Axioms 2023, 12(6), 600; https://doi.org/10.3390/axioms12060600 - 16 Jun 2023
Cited by 1 | Viewed by 1047
Abstract
Using the concepts of q-fractional calculus operator theory, we first define a (λ,q)-differintegral operator, and we then use m-fold symmetric functions to discover a new family of bi-close-to-convex functions. First, we estimate the general Taylor–Maclaurin coefficient [...] Read more.
Using the concepts of q-fractional calculus operator theory, we first define a (λ,q)-differintegral operator, and we then use m-fold symmetric functions to discover a new family of bi-close-to-convex functions. First, we estimate the general Taylor–Maclaurin coefficient bounds for a newly established class using the Faber polynomial expansion method. In addition, the Faber polynomial method is used to examine the Fekete–Szegö problem and the unpredictable behavior of the initial coefficient bounds of the functions that belong to the newly established class of m-fold symmetric bi-close-to-convex functions. Our key results are both novel and consistent with prior research, so we highlight a few of their important corollaries for a comparison. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
17 pages, 319 KiB  
Article
Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators
by Bahtiyar Bayraktar, Péter Kórus and Juan Eduardo Nápoles Valdés
Axioms 2023, 12(6), 517; https://doi.org/10.3390/axioms12060517 - 25 May 2023
Cited by 2 | Viewed by 1774
Abstract
In this study, we present new variants of the Hermite–Hadamard inequality via non-conformable fractional integrals. These inequalities are proven for convex functions and differentiable functions whose derivatives in absolute value are generally convex. Our main results are established using the classical Jensen–Mercer inequality [...] Read more.
In this study, we present new variants of the Hermite–Hadamard inequality via non-conformable fractional integrals. These inequalities are proven for convex functions and differentiable functions whose derivatives in absolute value are generally convex. Our main results are established using the classical Jensen–Mercer inequality and its variants for (h,m)-convex modified functions proven in this paper. In addition to showing that our results support previously known results from the literature, we provide examples of their application. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
23 pages, 382 KiB  
Article
Fractional Step Scheme to Approximate a Non-Linear Second-Order Reaction–Diffusion Problem with Inhomogeneous Dynamic Boundary Conditions
by Constantin Fetecău and Costică Moroşanu
Axioms 2023, 12(4), 406; https://doi.org/10.3390/axioms12040406 - 21 Apr 2023
Cited by 4 | Viewed by 2033
Abstract
Two main topics are addressed in the present paper, first, a rigorous qualitative study of a second-order reaction–diffusion problem with non-linear diffusion and cubic-type reactions, as well as inhomogeneous dynamic boundary conditions. Under certain assumptions about the input data: [...] Read more.
Two main topics are addressed in the present paper, first, a rigorous qualitative study of a second-order reaction–diffusion problem with non-linear diffusion and cubic-type reactions, as well as inhomogeneous dynamic boundary conditions. Under certain assumptions about the input data: gd(t,x), gfr(t,x), U0(x) and ζ0(x), we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a solution in the space Wp1,2(Q)×Wp1,2(Σ). Here, we extend previous results, enabling new mathematical models to be more suitable to describe the complexity of a wide class of different physical phenomena of life sciences, including moving interface problems, material sciences, digital image processing, automatic vehicle detection and tracking, the spread of an epidemic infection, semantic image segmentation including U-Net neural networks, etc. The second goal is to develop an iterative splitting scheme, corresponding to the non-linear second-order reaction–diffusion problem. Results relating to the convergence of the approximation scheme and error estimation are also established. On the basis of the proposed numerical scheme, we formulate the algorithm alg-frac_sec-ord_dbc, which represents a delicate challenge for our future works. The benefit of such a method could simplify the process of numerical computation. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
22 pages, 2402 KiB  
Article
Fractional–Order Modeling and Control of COVID-19 with Shedding Effect
by Isa A. Baba, Usa W. Humphries, Fathalla A. Rihan and J. E. N. Valdés
Axioms 2023, 12(4), 321; https://doi.org/10.3390/axioms12040321 - 24 Mar 2023
Cited by 2 | Viewed by 1552
Abstract
A fractional order COVID-19 model consisting of six compartments in Caputo sense is constructed. The indirect transmission of the virus through susceptible populations by the shedding effect is studied. Equilibrium solutions are calculated, and basic reproduction ratio (that depends both on direct and [...] Read more.
A fractional order COVID-19 model consisting of six compartments in Caputo sense is constructed. The indirect transmission of the virus through susceptible populations by the shedding effect is studied. Equilibrium solutions are calculated, and basic reproduction ratio (that depends both on direct and indirect mode of transmission), existence and uniqueness, as well as stability analysis of the solution of the model, are studied. The paper studies the effect of optimal control policy applied to shedding effect. The control is the observation of standard hygiene practices and chemical disinfectants in public spaces. Numerical simulations are carried out to support the analytic result and to show the significance of the fractional order from the biological viewpoint. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
Show Figures

Figure 1

17 pages, 359 KiB  
Article
Controllability for Fractional Evolution Equations with Infinite Time-Delay and Non-Local Conditions in Compact and Noncompact Cases
by Ahmed Salem and Kholoud N. Alharbi
Axioms 2023, 12(3), 264; https://doi.org/10.3390/axioms12030264 - 3 Mar 2023
Cited by 3 | Viewed by 1541
Abstract
The goal of this dissertation is to explore a system of fractional evolution equations with infinitesimal generator operators and an infinite time delay with non-local conditions. It turns out that there are two ways to regulate the solution. To demonstrate the presence of [...] Read more.
The goal of this dissertation is to explore a system of fractional evolution equations with infinitesimal generator operators and an infinite time delay with non-local conditions. It turns out that there are two ways to regulate the solution. To demonstrate the presence of the controllability of mild solutions, it is usual practice to apply Krasnoselskii’s theorem in the compactness case and the Sadvskii and Kuratowski measure of noncompactness. A fractional Caputo approach of order between 1 and 2 was used to construct our model. The families of linear operators cosine and sine, which are strongly continuous and uniformly bounded, are used to achieve the mild solution. To make our results seem to be applicable, a numerical example is provided. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
16 pages, 350 KiB  
Article
On a Coupled Differential System Involving (k,ψ)-Hilfer Derivative and (k,ψ)-Riemann–Liouville Integral Operators
by Ayub Samadi, Sotiris K. Ntouyas, Bashir Ahmad and Jessada Tariboon
Axioms 2023, 12(3), 229; https://doi.org/10.3390/axioms12030229 - 22 Feb 2023
Cited by 2 | Viewed by 3636
Abstract
We investigate a nonlinear, nonlocal, and fully coupled boundary value problem containing mixed (k,ψ^)-Hilfer fractional derivative and (k,ψ^)-Riemann–Liouville fractional integral operators. Existence and uniqueness results for the given problem are proved [...] Read more.
We investigate a nonlinear, nonlocal, and fully coupled boundary value problem containing mixed (k,ψ^)-Hilfer fractional derivative and (k,ψ^)-Riemann–Liouville fractional integral operators. Existence and uniqueness results for the given problem are proved with the aid of standard fixed point theorems. Examples illustrating the main results are presented. The paper concludes with some interesting findings. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
12 pages, 323 KiB  
Article
Basic Properties for Certain Subclasses of Meromorphic p-Valent Functions with Connected q-Analogue of Linear Differential Operator
by Sheza M. El-Deeb and Luminiţa-Ioana Cotîrlă
Axioms 2023, 12(2), 207; https://doi.org/10.3390/axioms12020207 - 15 Feb 2023
Cited by 2 | Viewed by 1398
Abstract
In this paper, we define three subclasses Mp,αn,q(η,A,B),Ip,αn(λ,μ,γ),, R [...] Read more.
In this paper, we define three subclasses Mp,αn,q(η,A,B),Ip,αn(λ,μ,γ),, Rpn,q(λ,μ,γ) connected with a q-analogue of linear differential operator Dα,p,Gn,q which consist of functions F of the form F(ζ)=ζp+j=1pajζj(pN) satisfying the subordination condition p1ηζDα,p,Gn,qF(ζ)Dα,p,Gn,qF(ζ)+pp1+Aζ1+Bζ.Also, we study the various properties and characteristics of this subclass Mp,αn,q,(η,A,B) such as coefficients estimate, distortion bounds and convex family. Also the concept of δneighborhoods and partial sums of analytic functions to the class Mp,αn,q(η,A,B). Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
13 pages, 297 KiB  
Article
Existence Results for an m-Point Mixed Fractional-Order Problem at Resonance on the Half-Line
by Ogbu F. Imaga, Samuel A. Iyase and Peter O. Ogunniyi
Axioms 2022, 11(11), 630; https://doi.org/10.3390/axioms11110630 - 9 Nov 2022
Cited by 3 | Viewed by 1584
Abstract
This work considers the existence of solutions for a mixed fractional-order boundary value problem at resonance on the half-line. The Mawhin’s coincidence degree theory will be used to prove existence results when the dimension of the kernel of the linear fractional differential operator [...] Read more.
This work considers the existence of solutions for a mixed fractional-order boundary value problem at resonance on the half-line. The Mawhin’s coincidence degree theory will be used to prove existence results when the dimension of the kernel of the linear fractional differential operator is equal to two. An example is given to demonstrate the main result obtained. Full article
(This article belongs to the Special Issue Recent Advances in Fractional Calculus)
Back to TopTop