Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1751 KiB  
Review
The Human Respiratory System and its Microbiome at a Glimpse
by Luigi Santacroce, Ioannis Alexandros Charitos, Andrea Ballini, Francesco Inchingolo, Paolo Luperto, Emanuele De Nitto and Skender Topi
Biology 2020, 9(10), 318; https://doi.org/10.3390/biology9100318 - 1 Oct 2020
Cited by 120 | Viewed by 17120
Abstract
The recent COVID-19 pandemic promoted efforts to better understand the organization of the respiratory microbiome and its evolution from birth to adulthood and how it interacts with external pathogens and the host immune system. This review aims to deepen understanding of the essential [...] Read more.
The recent COVID-19 pandemic promoted efforts to better understand the organization of the respiratory microbiome and its evolution from birth to adulthood and how it interacts with external pathogens and the host immune system. This review aims to deepen understanding of the essential physiological functions of the resident microbiome of the respiratory system on human health and diseases. First, the general characteristics of the normal microbiota in the different anatomical sites of the airways have been reported in relation to some factors such as the effect of age, diet and others on its composition and stability. Second, we analyze in detail the functions and composition and the correct functionality of the microbiome in the light of current knowledge. Several studies suggest the importance of preserving the micro-ecosystem of commensal, symbiotic and pathogenic microbes of the respiratory system, and, more recently, its relationship with the intestinal microbiome, and how it also leads to the maintenance of human health, has become better understood. Full article
(This article belongs to the Special Issue Microbiota and Immune System Crosstalk 2020)
Show Figures

Figure 1

12 pages, 698 KiB  
Article
National Publication Productivity during the COVID-19 Pandemic—A Preliminary Exploratory Analysis of the 30 Countries Most Affected
by Simon M. Müller, Georg F. Mueller, Alexander A. Navarini and Oliver Brandt
Biology 2020, 9(9), 271; https://doi.org/10.3390/biology9090271 - 5 Sep 2020
Cited by 18 | Viewed by 4447
Abstract
Background: The COVID 19 pandemic increased publication productivity enormously with numerous new COVID-19-related articles appearing daily, despite the fact that many health care workers in the partially overburdened national health care systems were faced with major challenges. Methods: In a cross-sectional, observational, retrospective [...] Read more.
Background: The COVID 19 pandemic increased publication productivity enormously with numerous new COVID-19-related articles appearing daily, despite the fact that many health care workers in the partially overburdened national health care systems were faced with major challenges. Methods: In a cross-sectional, observational, retrospective study we compared and correlated 17 epidemiologic, health care system-related and health-economic factors from medical databases and intergovernmental organisations potentially influencing the COVID-19 and non-COVID-19 publication productivity between 1 January and 30 April 2020 amongst the 30 countries most severely affected by the pandemic. These factors were additionally correlated with the national pre-COVID-19 publication rate for the same pre-year period to identify potential changes in the general publication behaviour. Findings: COVID-19 and non-COVID-19 publication rates correlated strongest with access to and quality of health care (ρ = 0.80 and 0.87, p < 0.0001), COVID-19 cases per capita (ρ = 0.78 and 0.72, p < 0.0001), GDP per capita (ρ = 0.69 and 0.76, p < 0.0001), health spending per capita (ρ = 0.61 and 0.73, p < 0.0001) and the pre-COVID-19 Hirsch-Index (ρ = 0.61 and 0.62, p = 0.002 and <0.0001). Ratios of publication rates for “Cancer”, “Diabetes” and “Stroke” in 2020 versus the pre-year period were 0.88 ± 0.06, 1.02 ± 0.18 and 0.9 ± 0.20, resulting in a pooled ratio of 0.93 ± 0.06 for non-COVID-19 publications. Interpretation: There are marked geographic and national differences in publication productivity during the COVID-19 pandemic. Both COVID-19- and non-COVID-19 publication productivity correlates with epidemiologic, health care system-related and healtheconomic factors, and pre-COVID publication expertise. Countries with a stable scientific infrastructure appear to maintain non-COVID-19 publication productivity nearly at the pre-year level and at the same time use their resilience to produce COVID-19 publications at high rates. Full article
(This article belongs to the Special Issue Coronavirus Disease 2019 (COVID-19))
Show Figures

Figure 1

19 pages, 4075 KiB  
Article
Deep Learning Neural Network Prediction Method Improves Proteome Profiling of Vascular Sap of Grapevines during Pierce’s Disease Development
by Cíntia Helena Duarte Sagawa, Paulo A. Zaini, Renata de A. B. Assis, Houston Saxe, Michelle Salemi, Aaron Jacobson, Phillip A. Wilmarth, Brett S. Phinney and Abhaya M. Dandekar
Biology 2020, 9(9), 261; https://doi.org/10.3390/biology9090261 - 1 Sep 2020
Cited by 4 | Viewed by 2843
Abstract
Plant secretome studies highlight the importance of vascular plant defense proteins against pathogens. Studies on Pierce’s disease of grapevines caused by the xylem-limited bacterium Xylella fastidiosa (Xf) have detected proteins and pathways associated with its pathobiology. Despite the biological importance of [...] Read more.
Plant secretome studies highlight the importance of vascular plant defense proteins against pathogens. Studies on Pierce’s disease of grapevines caused by the xylem-limited bacterium Xylella fastidiosa (Xf) have detected proteins and pathways associated with its pathobiology. Despite the biological importance of the secreted proteins in the extracellular space to plant survival and development, proteome studies are scarce due to methodological challenges. Prosit, a deep learning neural network prediction method is a powerful tool for improving proteome profiling by data-independent acquisition (DIA). We explored the potential of Prosit’s in silico spectral library predictions to improve DIA proteomic analysis of vascular leaf sap from grapevines with Pierce’s disease. The combination of DIA and Prosit-predicted libraries increased the total number of identified grapevine proteins from 145 to 360 and Xf proteins from 18 to 90 compared to gas-phase fractionation (GPF) libraries. The new proteins increased the range of molecular weights, assisted in the identification of more exclusive peptides per protein, and increased identification of low-abundance proteins. These improvements allowed identification of new functional pathways associated with cellular responses to oxidative stress, to be investigated further. Full article
Show Figures

Figure 1

21 pages, 330 KiB  
Review
Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-Algal Biostimulants
by Petronia Carillo, Loredana F. Ciarmiello, Pasqualina Woodrow, Giandomenico Corrado, Pasquale Chiaiese and Youssef Rouphael
Biology 2020, 9(9), 253; https://doi.org/10.3390/biology9090253 - 28 Aug 2020
Cited by 69 | Viewed by 6337
Abstract
Algal biomass, extracts, or derivatives have long been considered a valuable material to bring benefits to humans and cultivated plants. In the last decades, it became evident that algal formulations can induce multiple effects on crops (including an increase in biomass, yield, and [...] Read more.
Algal biomass, extracts, or derivatives have long been considered a valuable material to bring benefits to humans and cultivated plants. In the last decades, it became evident that algal formulations can induce multiple effects on crops (including an increase in biomass, yield, and quality), and that algal extracts contain a series of bioactive compounds and signaling molecules, in addition to mineral and organic nutrients. The need to reduce the non-renewable chemical input in agriculture has recently prompted an increase in the use of algal extracts as a plant biostimulant, also because of their ability to promote plant growth in suboptimal conditions such as saline environments is beneficial. In this article, we discuss some research areas that are critical for the implementation in agriculture of macro- and microalgae extracts as plant biostimulants. Specifically, we provide an overview of current knowledge and achievements about extraction methods, compositions, and action mechanisms of algal extracts, focusing on salt-stress tolerance. We also outline current limitations and possible research avenues. We conclude that the comparison and the integration of knowledge on the molecular and physiological response of plants to salt and to algal extracts should also guide the extraction procedures and application methods. The effects of algal biostimulants have been mainly investigated from an applied perspective, and the exploitation of different scientific disciplines is still much needed for the development of new sustainable strategies to increase crop tolerance to salt stress. Full article
(This article belongs to the Special Issue The Path to Sustainable Production and Application of Algae)
10 pages, 1783 KiB  
Article
Histomorphological and Redox Delineations in the Testis and Epididymis of Albino Rats Fed with Green-Synthesized Cellulose
by Chiagoziem A. Otuechere, Adewale Adewuyi, Olusegun L. Adebayo, Emmanuel Yawson, Omolara Kabiawu, Sarah Al-Rashed, Blessing Okubio, Amany M. Beshbishy and Gaber El-Saber Batiha
Biology 2020, 9(9), 246; https://doi.org/10.3390/biology9090246 - 25 Aug 2020
Viewed by 2142
Abstract
It has also become increasingly necessary to diversify the production of cellulose for biomedical applications. In this study, cellulose-green-synthesized from Sesamum indicum (GSC)—was administered orally to rats for 14 days as follows: control, 100, 200 and 400 mg/kg GSC. The impact of GSC [...] Read more.
It has also become increasingly necessary to diversify the production of cellulose for biomedical applications. In this study, cellulose-green-synthesized from Sesamum indicum (GSC)—was administered orally to rats for 14 days as follows: control, 100, 200 and 400 mg/kg GSC. The impact of GSC on the antioxidant status and histomorphology of the testes and epididymis were studied. GSC had no effects on organ weights and organosomatic indices. In the testes, GSC caused nonsignificant changes in superoxide dismutase, catalase, reduced glutathione and nitric oxide levels, whereas it significantly decreased glutathione peroxidase and malondialdehyde levels. In the epididymis, GSC significantly decreased superoxide dismutase and nitric oxide levels, but caused a significant increase in glutathione peroxidase and reduced glutathione levels. Furthermore, at ×200 magnification, testicular morphology appeared normal at all doses, however, extravasation of the germinal epithelium of the epididymis was observed at doses of 200 and 400 mg/kg GSC. Conversely, at ×400 magnification, spermatogenic arrest (testes) and chromatolytic alterations (epididymis) were observed at the higher doses (200 and 400 mg/kg GSC). This study reports on the effect of green-synthesized cellulose on testicular and epididymal histology and redox status and further extends the frontiers of research on cellulose. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

14 pages, 833 KiB  
Review
Conservation of Cell Communication Systems in Invertebrate Host–Defence Mechanisms: Possible Role in Immunity and Disease
by Manon Auguste, Teresa Balbi, Caterina Ciacci and Laura Canesi
Biology 2020, 9(8), 234; https://doi.org/10.3390/biology9080234 - 18 Aug 2020
Cited by 18 | Viewed by 3248
Abstract
Innate immunity is continuously revealing multiple and highly conserved host–defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells [...] Read more.
Innate immunity is continuously revealing multiple and highly conserved host–defence mechanisms. Studies on mammalian immunocytes are showing different communication systems that may play a role in coordinating innate immune responses also in invertebrates. Extracellular traps (ETs) are an immune response by which cells release net-like material, including DNA, histones and proteins. ETs are thought to immobilise and kill microorganisms, but are also involved in inflammation and autoimmune disease. Immune cells are also known to communicate through extracellular vesicles secreted in the extracellular environment or exosomes, which can carry a variety of different signalling molecules. Tunnelling nanotubes (TNTs) represent a direct cell-to-cell communication over a long distance, that allow for bi- or uni-directional transfer of cellular components between cells. Their functional role in a number of physio-pathological processes, including immune responses and pathogen transfer, has been underlined. Although ETs, exosomes, and TNTs have been described in invertebrate species, their possible role in immune responses is not fully understood. In this work, available data on these communication systems are summarised, in an attempt to provide basic information for further studies on their relevance in invertebrate immunity and disease. Full article
Show Figures

Figure 1

15 pages, 4552 KiB  
Article
ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection
by Géraldine Descamps, Laurine Verset, Anne Trelcat, Claire Hopkins, Jérome R. Lechien, Fabrice Journe and Sven Saussez
Biology 2020, 9(8), 235; https://doi.org/10.3390/biology9080235 - 18 Aug 2020
Cited by 41 | Viewed by 4325
Abstract
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely [...] Read more.
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely unknown in the head and neck (HN) sphere. Thus, this study aims to investigate its protein expression in several sites of the upper aerodigestive tract in order to highlight potential routes of infection. We compared ACE2 immunohistochemical expression between 70 paraffin-embedded specimens with two different antibodies and reported the quantified expression in each histological location. Surprisingly, we obtained different results depending on the antibody, an absence of labeling having been observed with a monoclonal antibody raised against the extracellular domain, whereas the polyclonal, against the cytoplasmic part of the protein, revealed enriched ACE2 expression, particularly in sinuses, vocal cords, salivary glands and oral cavity epithelial cells. The interpretation of these discordant results has brought several exciting lines of reflection. In conclusion, this study provides possible routes of entry for the SARS-CoV-2 in HN region and, above all, has led us to encourage caution when studying the ACE2 expression which is currently at the center of all attention. Full article
(This article belongs to the Special Issue Molecular Targets and Targeting in Biomedical Sciences)
Show Figures

Figure 1

22 pages, 4117 KiB  
Article
Calligonum polygonoides L. Shrubs Provide Species-Specific Facilitation for the Understory Plants in Coastal Ecosystem
by Ahmed M. Abd-ElGawad, Younes M. Rashad, Ahmed M. Abdel-Azeem, Sami A. Al-Barati, Abdulaziz M. Assaeed and Amr M. Mowafy
Biology 2020, 9(8), 232; https://doi.org/10.3390/biology9080232 - 17 Aug 2020
Cited by 12 | Viewed by 3905
Abstract
Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data [...] Read more.
Plant facilitation has a pivotal role in regulating species coexistence, particularly under arid environments. The present study aimed to evaluate the facilitative effect of Calligonum polygonoides L. on its understory plants in coastal habitat. Forty Calligonum shrubs were investigated and the environmental data (soil temperature, moisture, pH, salinity, carbon and nitrogen content, and light intensity), vegetation composition, and diversity of associated species were recorded under- and outside canopies. Eight of the most frequent understory species were selected for evaluating their response to the facilitative effect of C. polygonoides. Bioactive ingredients of Calligonum roots were analyzed using gas chromatography-mass spectrometry (GC-MS), and mycorrhizal biodiversity in their rhizosphere soil was also assessed. The effect of Calligonum on understory plants ranged between facilitation and inhibition in an age-dependent manner. Old shrubs facilitated 18 and inhibited 18 associated species, while young shrubs facilitated 13 and inhibited 9 species. Calligonum ameliorated solar radiation and high-temperature stresses for the under canopy plants. Moreover, soil moisture was increased by 509.52% and 85.71%, while salinity was reduced by 47.62% and 23.81% under old and young shrubs, respectively. Soil contents of C and N were increased under canopy. This change in the microenvironment led to photosynthetic pigments induction in the majority of understory species. However, anthocyanin, proline contents, and antioxidant enzyme activities were reduced in plants under canopy. Thirteen mycorrhizal fungal species were identified in the rhizospheric soil of Calligonum with the predominance of Funneliformis mosseae. Thirty-one compounds were identified in Calligonum root extract in which pyrogallol and palmitic acid, which have antimicrobial and allelopathic activities, were the major components. The obtained results demonstrated that facilitation provided by Calligonum is mediated with multiple mechanisms and included a set of interrelated scenarios that took place in a species-specific manner. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

9 pages, 4803 KiB  
Article
Quercetin Caused Redox Homeostasis Imbalance and Activated the Kynurenine Pathway
by Oluyomi Stephen Adeyemi, Chinemerem Ebugosi, Oghenerobor Benjamin Akpor, Helal F. Hetta, Sarah Al-Rashed, David Adeiza Otohinoyi, Damilare Rotimi, Akinyomade Owolabi, Ikponmwosa Owen Evbuomwan and Gaber El-Saber Batiha
Biology 2020, 9(8), 219; https://doi.org/10.3390/biology9080219 - 10 Aug 2020
Cited by 11 | Viewed by 3316
Abstract
The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial [...] Read more.
The search for new and better antimicrobial therapy is a continuous effort. Quercetin is a polyphenol with promising antimicrobial properties. However, the understanding of its antimicrobial mechanism is limited. In this study, we investigated the biochemical mechanistic action of quercetin as an antibacterial compound. Isolates of Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus were initially exposed to quercetin for antibacterial evaluation. Subsequently, S. aureus (Gram-positive) and E. coli (Gram-negative) cells were exposed to quercetin with or without ascorbic acid, and cells were harvested for selected biochemical assays. These assays included redox homeostasis (lipid peroxidation, total thiol, total antioxidant capacity), nitric oxide, and kynurenine concentration as well as DNA fragmentation. The results revealed that quercetin caused lipid peroxidation in the bacterial isolates. Lipid peroxidation may indicate ensuing oxidative stress resulting from quercetin treatment. Furthermore, tryptophan degradation to kynurenine was activated by quercetin in S. aureus but not in E. coli, suggesting that local L-tryptophan concentration might become limiting for bacterial growth. These findings, considered together, may indicate that quercetin restricts bacterial growth by promoting oxidative cellular stress, as well as by reducing the local L-tryptophan availability by activating the kynurenine pathway, thus contributing to our understanding of the molecular mechanism of the antimicrobial action of quercetin. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Onset and Progression of Diseases)
Show Figures

Figure 1

20 pages, 1078 KiB  
Review
Non-Coding RNAs and Nucleosome Remodeling Complexes: An Intricate Regulatory Relationship
by Benjamin J. Patty and Sarah J. Hainer
Biology 2020, 9(8), 213; https://doi.org/10.3390/biology9080213 - 7 Aug 2020
Cited by 17 | Viewed by 5048
Abstract
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an [...] Read more.
Eukaryotic genomes are pervasively transcribed, producing both coding and non-coding RNAs (ncRNAs). ncRNAs are diverse and a critical family of biological molecules, yet much remains unknown regarding their functions and mechanisms of regulation. ATP-dependent nucleosome remodeling complexes, in modifying chromatin structure, play an important role in transcriptional regulation. Recent findings show that ncRNAs regulate nucleosome remodeler activities at many levels and that ncRNAs are regulatory targets of nucleosome remodelers. Further, a series of recent screens indicate this network of regulatory interactions is more expansive than previously appreciated. Here, we discuss currently described regulatory interactions between ncRNAs and nucleosome remodelers and contextualize their biological functions. Full article
(This article belongs to the Special Issue ATP-dependent Chromatin Remodeler)
Show Figures

Figure 1

16 pages, 3333 KiB  
Article
Expanding the Limits of Computer-Assisted Sperm Analysis through the Development of Open Software
by Jesús Yániz, Carlos Alquézar-Baeta, Jorge Yagüe-Martínez, Jesús Alastruey-Benedé, Inmaculada Palacín, Sergii Boryshpolets, Vitaliy Kholodnyy, Hermes Gadêlha and Rosaura Pérez-Pe
Biology 2020, 9(8), 207; https://doi.org/10.3390/biology9080207 - 5 Aug 2020
Cited by 7 | Viewed by 4526
Abstract
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related [...] Read more.
Computer assisted sperm analysis (CASA) systems can reduce errors occurring in manual analysis. However, commercial CASA systems are frequently not applicable at the forefront of challenging research endeavors. The development of open source software may offer important solutions for researchers working in related areas. Here, we present an example of this, with the development of three new modules for the OpenCASA software (hosted at Github). The first is the Chemotactic Sperm Accumulation Module, a powerful tool for studying sperm chemotactic behavior, analyzing the sperm accumulation in the direct vicinity of the stimuli. This module was validated by comparing fish sperm accumulation, with or without the influence of an attractant. The analysis clearly indicated cell accumulation in the treatment group, while the distribution of sperm was random in the control group. The second is the Sperm Functionality Module, based on the ability to recognize five sperm subpopulations according to their fluorescence patterns associated with the plasma membrane and acrosomal status. The last module is the Sperm Concentration Module, which expands the utilities of OpenCASA. These last two modules were validated, using bull sperm, by comparing them with visual counting by an observer. A high level of correlation was achieved in almost all the data, and a good agreement between both methods was obtained. With these newly developed modules, OpenCASA is consolidated as a powerful free and open-source tool that allows different aspects of sperm quality to be evaluated, with many potential applications for researchers. Full article
(This article belongs to the Special Issue Factors Affecting In Vitro Assessment of Sperm Quality)
Show Figures

Graphical abstract

45 pages, 3962 KiB  
Review
Circadian Photoentrainment in Mice and Humans
by Russell G. Foster, Steven Hughes and Stuart N. Peirson
Biology 2020, 9(7), 180; https://doi.org/10.3390/biology9070180 - 21 Jul 2020
Cited by 78 | Viewed by 7984
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In [...] Read more.
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed. Full article
(This article belongs to the Special Issue Biological Clocks)
Show Figures

Figure 1

11 pages, 1638 KiB  
Review
Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question
by Luigi De Bellis, Andrea Luvisi and Amedeo Alpi
Biology 2020, 9(7), 162; https://doi.org/10.3390/biology9070162 - 12 Jul 2020
Cited by 6 | Viewed by 5356
Abstract
After the discovery in 1967 of plant glyoxysomes, aconitase, one the five enzymes involved in the glyoxylate cycle, was thought to be present in the organelles, and although this was found not to be the case around 25 years ago, it is still [...] Read more.
After the discovery in 1967 of plant glyoxysomes, aconitase, one the five enzymes involved in the glyoxylate cycle, was thought to be present in the organelles, and although this was found not to be the case around 25 years ago, it is still suggested in some textbooks and recent scientific articles. Genetic research (including the study of mutants and transcriptomic analysis) is becoming increasingly important in plant biology, so metabolic pathways must be presented correctly to avoid misinterpretation and the dissemination of bad science. The focus of our study is therefore aconitase, from its first localization inside the glyoxysomes to its relocation. We also examine data concerning the role of the enzyme malate dehydrogenase in the glyoxylate cycle and data of the expression of aconitase genes in Arabidopsis and other selected higher plants. We then propose a new model concerning the interaction between glyoxysomes, mitochondria and cytosol in cotyledons or endosperm during the germination of oil-rich seeds. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

13 pages, 1419 KiB  
Article
CoVid-19 Pandemic Trend Modeling and Analysis to Support Resilience Decision-Making
by Romney B. Duffey and Enrico Zio
Biology 2020, 9(7), 156; https://doi.org/10.3390/biology9070156 - 7 Jul 2020
Cited by 9 | Viewed by 3723
Abstract
Policy decision-making for system resilience to a hazard requires the estimation and prediction of the trends of growth and decline of the impacts of the hazard. With focus on the recent worldwide spread of CoVid-19, we take the infection rate as the relevant [...] Read more.
Policy decision-making for system resilience to a hazard requires the estimation and prediction of the trends of growth and decline of the impacts of the hazard. With focus on the recent worldwide spread of CoVid-19, we take the infection rate as the relevant metric whose trend of evolution to follow for verifying the effectiveness of the countermeasures applied. By comparison with the theories of growth and recovery in coupled socio-medical systems, we find that the data for many countries show infection rate trends that are exponential in form. In particular, the recovery trajectory is universal in trend and consistent with the learning theory, which allows for predictions useful in the assistance of decision-making of emergency recovery actions. The findings are validated by extensive data and comparison to medical pandemic models. Full article
(This article belongs to the Special Issue Coronavirus Disease 2019 (COVID-19))
Show Figures

Figure 1

17 pages, 4366 KiB  
Article
Norpa Signalling and the Seasonal Circadian Locomotor Phenotype in Drosophila
by Carlo Breda, Ezio Rosato and Charalambos P. Kyriacou
Biology 2020, 9(6), 130; https://doi.org/10.3390/biology9060130 - 16 Jun 2020
Cited by 3 | Viewed by 3815
Abstract
In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR [...] Read more.
In this paper, we review the role of the norpA-encoded phospholipase C in light and thermal entrainment of the circadian clock in Drosophila melanogaster. We extend our discussion to the role of norpA in the thermo-sensitive splicing of the per 3′ UTR, which has significant implications for seasonal adaptations of circadian behaviour. We use the norpA mutant-generated enhancement of per splicing and the corresponding advance that it produces in the morning (M) and evening (E) locomotor component to dissect out the neurons that are contributing to this norpA phenotype using GAL4/UAS. We initially confirmed, by immunocytochemistry and in situ hybridisation in adult brains, that norpA expression is mostly concentrated in the eyes, but we were unable to unequivocally reveal norpA expression in the canonical clock cells using these methods. In larval brains, we did see some evidence for co-expression of NORPA with PDF in clock neurons. Nevertheless, downregulation of norpA in clock neurons did generate behavioural advances in adults, with the eyes playing a significant role in the norpA seasonal phenotype at high temperatures, whereas the more dorsally located CRYPTOCHROME-positive clock neurons are the likely candidates for generating the norpA behavioural effects in the cold. We further show that knockdown of the related plc21C encoded phospholipase in clock neurons does not alter per splicing nor generate any of the behavioural advances seen with norpA. Our results with downregulating norpA and plc21C implicate the rhodopsins Rh2/Rh3/Rh4 in the eyes as mediating per 3′ UTR splicing at higher temperatures and indicate that the CRY-positive LNds, also known as ‘evening’ cells are likely mediating the low-temperature seasonal effects on behaviour via altering per 3′UTR splicing. Full article
(This article belongs to the Special Issue Biological Clocks)
Show Figures

Figure 1

12 pages, 2574 KiB  
Article
Period of Boar Ejaculate Collection Contributes to the Yearly Intra-Male Variability of Seminal Plasma Cytokines
by Lorena Padilla, Xiomara Lucas, Inmaculada Parrilla, Cristina Perez-Patiño, Heriberto Rodriguez-Martinez, Jordi Roca and Isabel Barranco
Biology 2020, 9(5), 105; https://doi.org/10.3390/biology9050105 - 20 May 2020
Cited by 4 | Viewed by 2407
Abstract
The concentrations of cytokines in seminal plasma (SP) fluctuate over time in healthy males, weakening their practical usefulness as diagnostic tools. This study evaluated the relevance of intra-male variability in SP cytokines and to what extent the period of the year when ejaculate [...] Read more.
The concentrations of cytokines in seminal plasma (SP) fluctuate over time in healthy males, weakening their practical usefulness as diagnostic tools. This study evaluated the relevance of intra-male variability in SP cytokines and to what extent the period of the year when ejaculate is collected contributes to such variability. Thirteen cytokines (GM-CSF, IFNγ, IL-1α, IL-1β, IL-1ra, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, and TNFα) were measured using the Luminex xMAP® technology for 180 SP samples of ejaculate collected over a year from nine healthy and fertile boars. The SP samples were grouped into two annual periods according to decreasing or increasing daylight and ambient temperature. Intra-male variability was higher than inter-male variability for all cytokines. All SP cytokines showed concentration differences between the two periods of the year, showing the highest concentration during the increasing daylength/temperature period, irrespective of the male. Similarly, some cytokines showed differences between daylength/temperature periods when focusing on their total amount in the ejaculate. No strong relationship (explaining more than 50% of the total variance) was found between annual fluctuations in SP-cytokine levels and semen parameters. In conclusion, the period of the year during which ejaculates were collected helps explain the intra-male variability of SP-cytokine levels in breeding boars. Full article
(This article belongs to the Section Immunology)
Show Figures

Graphical abstract

19 pages, 5401 KiB  
Article
Isolation and Identification of Fusarium spp., the Causal Agents of Onion (Allium cepa) Basal Rot in Northeastern Israel
by Ben Kalman, Dekel Abraham, Shaul Graph, Rafael Perl-Treves, Yael Meller Harel and Ofir Degani
Biology 2020, 9(4), 69; https://doi.org/10.3390/biology9040069 - 2 Apr 2020
Cited by 39 | Viewed by 10867
Abstract
Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion (Allium cepa) bulb basal rot in northern Israel. The disease is caused mainly by Fusarium species. Rotting onion [...] Read more.
Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion (Allium cepa) bulb basal rot in northern Israel. The disease is caused mainly by Fusarium species. Rotting onion bulbs were sampled from fields in the Golan Heights in northeastern Israel during the summers of 2017 and 2018. Tissue from the sampled onion bulbs was used for the isolation and identification of the infecting fungal species using colony and microscopic morphology characterization. Final confirmation of the pathogens was performed with PCR amplification and sequencing using fungi-specific and Fusarium species-specific primers. Four Fusarium spp. isolates were identified in onion bulbs samples collected from the contaminated field: F. proliferatum, F. oxysporum f. sp. cepae, and two species less familiar as causative agents of this disease, F. acutatum and F. anthophilium. Phylogenetic analysis revealed that these species subdivided into two populations, a northern group isolated from white (Riverside cv.) onion bulbs, and a southern group isolated from red (565/505 cv.) bulbs. Pathogenicity tests conducted with seedlings and bulbs under moist conditions proved that all species could cause the disease symptoms, but with different degrees of virulence. Inoculating seeds with spore suspensions of the four species, in vitro, significantly reduced seedlings’ germination rate, hypocotyl elongation, and fresh biomass. Mature onion bulbs infected with the fungal isolates produced typical rot symptoms 14 days post-inoculation, and the fungus from each infected bulb was re-isolated and identified to satisfy Koch’s postulates. The onion bulb assay also reflected the degree of sensitivity of different onion cultivars to the disease. This work is the first confirmed report of the direct and primary cause of Fusarium onion basal rot disease in northeastern Israel. These findings are a necessary step towards uncovering the mycoflora of the diseased onion plants and developing a preventive program that would reduce the disease damage. Full article
(This article belongs to the Special Issue Plant-Pathogen Interaction)
Show Figures

Figure 1

7 pages, 276 KiB  
Opinion
Is It Time to Rethink Our Weight Loss Paradigms?
by Paulo Gentil, Ricardo Borges Viana, João Pedro Naves, Fabrício Boscolo Del Vecchio, Victor Coswig, Jeremy Loenneke and Claudio André Barbosa de Lira
Biology 2020, 9(4), 70; https://doi.org/10.3390/biology9040070 - 2 Apr 2020
Cited by 7 | Viewed by 7059
Abstract
Strategies aiming to promote weight loss usually include anything that results in an increase in energy expenditure (exercise) or a decrease in energy intake (diet). However, the probability of losing weight is low and the probability of sustained weight loss is even lower. [...] Read more.
Strategies aiming to promote weight loss usually include anything that results in an increase in energy expenditure (exercise) or a decrease in energy intake (diet). However, the probability of losing weight is low and the probability of sustained weight loss is even lower. Herein, we bring some questions and suggestions about the topic, with a focus on exercise interventions. Based on the current evidence, we should look at how metabolism changes in response to interventions instead of counting calories, so we can choose more efficient models that can account for the complexity of human organisms. In this regard, high-intensity training might be particularly interesting as a strategy to promote fat loss since it seems to promote many physiological changes that might favor long-term weight loss. However, it is important to recognize the controversy of the results regarding interval training (IT), which might be explained by the large variations in its application. For this reason, we have to be more judicious about how exercise is planned and performed and some factors, like supervision, might be important for the results. The intensity of exercise seems to modulate not only how many calories are expended after exercise, but also where they came from. Instead of only estimating the number of calories ingested and expended, it seems that we have to act positively in order to create an adequate environment for promoting healthy and sustainable weight loss. Full article
(This article belongs to the Section Physiology)
24 pages, 1292 KiB  
Communication
Assessing Autophagy in Archived Tissue or How to Capture Autophagic Flux from a Tissue Snapshot
by Magali Humbert, María Morán, Patricia de la Cruz-Ojeda, Jordi Muntané, Tabea Wiedmer, Nadezda Apostolova, Sharon L. McKenna, Guillermo Velasco, Walter Balduini, Leopold Eckhart, Bassam Janji, Belém Sampaio-Marques, Paula Ludovico, Eva Žerovnik, Rupert Langer, Aurel Perren, Nikolai Engedal and Mario P. Tschan
Biology 2020, 9(3), 59; https://doi.org/10.3390/biology9030059 - 21 Mar 2020
Cited by 11 | Viewed by 5506
Abstract
Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in [...] Read more.
Autophagy is a highly conserved degradation mechanism that is essential for maintaining cellular homeostasis. In human disease, autophagy pathways are frequently deregulated and there is immense interest in targeting autophagy for therapeutic approaches. Accordingly, there is a need to determine autophagic activity in human tissues, an endeavor that is hampered by the fact that autophagy is characterized by the flux of substrates whereas histology informs only about amounts and localization of substrates and regulators at a single timepoint. Despite this challenging task, considerable progress in establishing markers of autophagy has been made in recent years. The importance of establishing clear-cut autophagy markers that can be used for tissue analysis cannot be underestimated. In this review, we attempt to summarize known techniques to quantify autophagy in human tissue and their drawbacks. Furthermore, we provide some recommendations that should be taken into consideration to improve the reliability and the interpretation of autophagy biomarkers in human tissue samples. Full article
(This article belongs to the Special Issue Autophagy in Cancer)
Show Figures

Figure 1

16 pages, 1852 KiB  
Article
Effect of Tillage System and Cover Crop on Maize Mycorrhization and Presence of Magnaporthiopsis maydis
by Mariana Patanita, Maria Doroteia Campos, Maria do Rosário Félix, Mário Carvalho and Isabel Brito
Biology 2020, 9(3), 46; https://doi.org/10.3390/biology9030046 - 3 Mar 2020
Cited by 23 | Viewed by 3892
Abstract
The sustainability of agriculture requires the adoption of agricultural soil conservation practices with positive impacts on soil quality, which can promote beneficial soil microbiota like arbuscular mycorrhizal fungi (AMF) and its diversity. This study aims to assess the influence of the presence of [...] Read more.
The sustainability of agriculture requires the adoption of agricultural soil conservation practices with positive impacts on soil quality, which can promote beneficial soil microbiota like arbuscular mycorrhizal fungi (AMF) and its diversity. This study aims to assess the influence of the presence of intact extraradical mycelium as a preferential source of inoculum of the native AMF in order to guarantee a better colonization as well as its possible bioprotective effect against Magnaporthiopsis maydis. In order to vary the available extraradical mycelium, two experiments, with and without cover crop, were carried out, in which two tillage systems and two maize varieties were studied. The capitalization of the benefits, in terms of grain production and M. maydis presence, associated to the cover crop were only achieved with minimum tillage. Therefore, both cultural practices are necessary to reduce the fungus presence, coupling the effect of mycorrhization together with other benefits associated with the cover crop. Although in the absence of a cover crop and using conventional tillage, yields and lower levels of M. maydis are possibly achieved, this system is more dependent on the variety used, does not benefit from the advantages associated with the cover crop, is more expensive, and environmentally unsustainable. Full article
(This article belongs to the Special Issue Plant-Pathogen Interaction)
Show Figures

Figure 1

18 pages, 2212 KiB  
Article
Genetic Diversity and Identification of Vietnamese Paphiopedilum Species Using DNA Sequences
by Huyen-Trang Vu, Quoc-Luan Vu, Thanh-Diem Nguyen, Ngan Tran, Thanh-Cong Nguyen, Phuong-Nam Luu, Duy-Duong Tran, Truong-Khoa Nguyen and Ly Le
Biology 2020, 9(1), 9; https://doi.org/10.3390/biology9010009 - 31 Dec 2019
Cited by 12 | Viewed by 6666
Abstract
Paphiopedilum is among the most popular ornamental orchid genera due to its unique slipper flowers and attractive leaf coloration. Most of the Paphiopedilum species are in critical danger due to over-exploitation. They were listed in Appendix I of the Convention on International Trade [...] Read more.
Paphiopedilum is among the most popular ornamental orchid genera due to its unique slipper flowers and attractive leaf coloration. Most of the Paphiopedilum species are in critical danger due to over-exploitation. They were listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, which prevents their being traded across borders. While most Paphiopedilum species are distinctive, owing to their respective flowers, their vegetative features are more similar and undistinguished. Hence, the conservation of these species is challenging, as most traded specimins are immature and non-flowered. An urgent need exists for effective identification methods to prevent further illegal trading of Paphiopedilum species. DNA barcoding is a rapid and sensitive method for species identification, at any developmental stage, using short DNA sequences. In this study, eight loci, i.e., ITS, LEAFY, ACO, matK, trnL, rpoB, rpoC1, and trnH-psbA, were screened for potential barcode sequences on the Vietnamese Paphiopedilum species. In total, 17 out of 22 Paphiopedilum species were well identified. The studied DNA sequences were deposited to GenBank, in which Paphiopedilum dalatense accessions were introduced for the first time. ACO, LEAFY, and trnH-psbA were limited in amplification rate for Paphiopedilum. ITS was the best single barcode. Single ITS could be used along with nucleotide polymorphism characteristics for species discrimination. The combination of ITS + matK was the most efficient identification barcode for Vietnamese Paphiopedilum species. This barcode also succeeded in recognizing misidentified or wrongly-named traded samples. Different bioinformatics programs and algorithms for establishing phylogenetic trees were also compared in the study to propose quick, simple, and effective tools for practical use. It was proved that both the Bayesian Inference method in the MRBAYES program and the neighbor-joining method in the MEGA software met the criteria. Our study provides a barcoding database of Vietnamese Paphiopedilum which may significantly contribute to the control and conservation of these valuable species. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

12 pages, 916 KiB  
Article
Consequences of Haemorrhagic Smolt Syndrome (HSS) for the Immune Status of Atlantic salmon (Salmo salar L.) (Case Study)
by Aleksei Krasnov, Ingunn Sommerset, Tina Søfteland, Sergey Afanasyev, Preben Boysen and Hege Lund
Biology 2020, 9(1), 1; https://doi.org/10.3390/biology9010001 - 19 Dec 2019
Cited by 3 | Viewed by 3335
Abstract
Haemorrhagic smolt syndrome (HSS) is a disorder of unknown aetiology causing losses in the fresh water phase of Atlantic salmon farming. Normally, the mortality is limited and symptoms disappear upon seawater exposure. In this case study, classical HSS pathology with internal organ haemorrhages [...] Read more.
Haemorrhagic smolt syndrome (HSS) is a disorder of unknown aetiology causing losses in the fresh water phase of Atlantic salmon farming. Normally, the mortality is limited and symptoms disappear upon seawater exposure. In this case study, classical HSS pathology with internal organ haemorrhages and nephrocalcinosis was diagnosed, and the losses were substantial. Microarray analyses of head kidney revealed association between HSS and enhanced expression of stress genes and proteins reducing bioavailability of iron, heme, and retinol. In parallel, suppression of multiple metabolic pathways was observed. Up-regulation of genes encoding acute phase proteins, complement, and lectins indicated mild inflammation but without characteristic features of viral or bacterial infections. Microarray analyses highlighted several members of tumor necrosis factor receptor superfamily that may control development of B-cell immunity. Examination of IgM at the mRNA and protein levels showed the impact of HSS on vaccine responses. In fish without HSS symptoms (non-HSS), titres of vaccine specific antibodies to A-layer of Aeromonas salmonicida subsp. salmonicida and Moritella viscosa and antibodies binding to DNP-keyhole limpet hemocyanin (DNP-KLH), which are presumably polyreactive, were respectively four- and 14-fold higher than in HSS-diseased fish. Parallel sequencing of variable regions of immunoglobulin Mrevealed a larger size of most abundant clonotypes shared by multiple individuals in the non-HSS group. The results of the current case study indicated that, in addition to direct damage, HSS suppresses humoral immune responses including the production of specific and polyreactive antibodies. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

19 pages, 2740 KiB  
Article
Combined Effects of Acute Temperature Change and Elevated pCO2 on the Metabolic Rates and Hypoxia Tolerances of Clearnose Skate (Rostaraja eglanteria), Summer Flounder (Paralichthys dentatus), and Thorny Skate (Amblyraja radiata)
by Gail D. Schwieterman, Daniel P. Crear, Brooke N. Anderson, Danielle R. Lavoie, James A. Sulikowski, Peter G. Bushnell and Richard W. Brill
Biology 2019, 8(3), 56; https://doi.org/10.3390/biology8030056 - 26 Jul 2019
Cited by 22 | Viewed by 6585
Abstract
Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population’s habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing [...] Read more.
Understanding how rising temperatures, ocean acidification, and hypoxia affect the performance of coastal fishes is essential to predicting species-specific responses to climate change. Although a population’s habitat influences physiological performance, little work has explicitly examined the multi-stressor responses of species from habitats differing in natural variability. Here, clearnose skate (Rostaraja eglanteria) and summer flounder (Paralichthys dentatus) from mid-Atlantic estuaries, and thorny skate (Amblyraja radiata) from the Gulf of Maine, were acutely exposed to current and projected temperatures (20, 24, or 28 °C; 22 or 30 °C; and 9, 13, or 15 °C, respectively) and acidification conditions (pH 7.8 or 7.4). We tested metabolic rates and hypoxia tolerance using intermittent-flow respirometry. All three species exhibited increases in standard metabolic rate under an 8 °C temperature increase (Q10 of 1.71, 1.07, and 2.56, respectively), although this was most pronounced in the thorny skate. At the lowest test temperature and under the low pH treatment, all three species exhibited significant increases in standard metabolic rate (44–105%; p < 0.05) and decreases in hypoxia tolerance (60–84% increases in critical oxygen pressure; p < 0.05). This study demonstrates the interactive effects of increasing temperature and changing ocean carbonate chemistry are species-specific, the implications of which should be considered within the context of habitat. Full article
(This article belongs to the Special Issue Fish Metabolic Physiology in Response to Stress)
Show Figures

Figure 1

8 pages, 1330 KiB  
Article
N-acetyl-L-cysteine Prevents Lactate-Mediated PGC1-alpha Expression in C2C12 Myotubes
by Minas Nalbandian, Zsolt Radak and Masaki Takeda
Biology 2019, 8(2), 44; https://doi.org/10.3390/biology8020044 - 10 Jun 2019
Cited by 10 | Viewed by 4173
Abstract
Background: Exercise induces many physiological adaptations. Recently, it has been proposed that some of these adaptations are induced by exercise-mediated lactate production. In this study, we aimed to investigate in vitro the effect of lactate in cultured myotubes and whether antioxidants could inhibit [...] Read more.
Background: Exercise induces many physiological adaptations. Recently, it has been proposed that some of these adaptations are induced by exercise-mediated lactate production. In this study, we aimed to investigate in vitro the effect of lactate in cultured myotubes and whether antioxidants could inhibit the effect. Methods: Differentiated myotubes were cultured at different concentrations of L-lactate (0, 10, 30, 50 mM) in the absence or presence of an antioxidant, N-acetyl-L-cysteine (Nac). The temporal effect of lactate exposure in myotubes was also explored. Results: Two hours of exposure to 50 mM L-lactate and six hours of exposure to 30 or 50 mM L-lactate caused a significant increase in PGC1-alpha (peroxisome proliferator-activated receptor γ coactivator-1α) expression in the myotubes. This up-regulation was suppressed by 2 mM Nac. Intermittent and continuous lactate exposure caused similar PGC1-alpha up-regulation. These results suggest that the increase in PGC1-alpha expression is mediated by reactive oxygen species (ROS) production from lactate metabolism and that both continuous and intermittent exposure to L-lactate can cause the up-regulation. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

15 pages, 1249 KiB  
Review
From Powerhouse to Perpetrator—Mitochondria in Health and Disease
by Nima B. Fakouri, Thomas Lau Hansen, Claus Desler, Sharath Anugula and Lene Juel Rasmussen
Biology 2019, 8(2), 35; https://doi.org/10.3390/biology8020035 - 11 May 2019
Cited by 14 | Viewed by 6440
Abstract
In this review we discuss the interaction between metabolic stress, mitochondrial dysfunction, and genomic instability. Unrepaired DNA damage in the nucleus resulting from excess accumulation of DNA damages and stalled replication can initiate cellular signaling responses that negatively affect metabolism and mitochondrial function. [...] Read more.
In this review we discuss the interaction between metabolic stress, mitochondrial dysfunction, and genomic instability. Unrepaired DNA damage in the nucleus resulting from excess accumulation of DNA damages and stalled replication can initiate cellular signaling responses that negatively affect metabolism and mitochondrial function. On the other hand, mitochondrial pathologies can also lead to stress in the nucleus, and cause sensitivity to DNA-damaging agents. These are examples of how hallmarks of cancer and aging are connected and influenced by each other to protect humans from disease. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Aging and Diseases of Aging)
Show Figures

Figure 1

26 pages, 10469 KiB  
Review
Mitochondrial Dysfunction in Parkinson’s Disease—Cause or Consequence?
by Chun Chen, Doug M. Turnbull and Amy K. Reeve
Biology 2019, 8(2), 38; https://doi.org/10.3390/biology8020038 - 11 May 2019
Cited by 165 | Viewed by 21030
Abstract
James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why [...] Read more.
James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why it only affects some individuals with advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction we have detected in Parkinson’s disease is a pathogenic cause of neuronal loss or whether it is itself a consequence of dysfunction in other pathways. We examine research data from cases of idiopathic Parkinson’s with that from model systems and individuals with familial forms of the disease. Furthermore, we include data from healthy aged individuals to highlight that many of the changes described are also present with advancing age, though not normally in the presence of severe neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to catastrophic neuronal loss in those affected by this disease. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Aging and Diseases of Aging)
Show Figures

Figure 1

18 pages, 1335 KiB  
Review
Mitochondria and Aging—The Role of Exercise as a Countermeasure
by Mats I Nilsson and Mark A Tarnopolsky
Biology 2019, 8(2), 40; https://doi.org/10.3390/biology8020040 - 11 May 2019
Cited by 54 | Viewed by 21872
Abstract
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ [...] Read more.
Mitochondria orchestrate the life and death of most eukaryotic cells by virtue of their ability to supply adenosine triphosphate from aerobic respiration for growth, development, and maintenance of the ‘physiologic reserve’. Although their double-membrane structure and primary role as ‘powerhouses of the cell’ have essentially remained the same for ~2 billion years, they have evolved to regulate other cell functions that contribute to the aging process, such as reactive oxygen species generation, inflammation, senescence, and apoptosis. Biological aging is characterized by buildup of intracellular debris (e.g., oxidative damage, protein aggregates, and lipofuscin), which fuels a ‘vicious cycle’ of cell/DNA danger response activation (CDR and DDR, respectively), chronic inflammation (‘inflammaging’), and progressive cell deterioration. Therapeutic options that coordinately mitigate age-related declines in mitochondria and organelles involved in quality control, repair, and recycling are therefore highly desirable. Rejuvenation by exercise is a non-pharmacological approach that targets all the major hallmarks of aging and extends both health- and lifespan in modern humans. Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Aging and Diseases of Aging)
Show Figures

Figure 1

22 pages, 1875 KiB  
Review
The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker
by Michael H. Hastings, Elizabeth S. Maywood and Marco Brancaccio
Biology 2019, 8(1), 13; https://doi.org/10.3390/biology8010013 - 11 Mar 2019
Cited by 99 | Viewed by 12260
Abstract
The past twenty years have witnessed the most remarkable breakthroughs in our understanding of the molecular and cellular mechanisms that underpin circadian (approximately one day) time-keeping. Across model organisms in diverse taxa: cyanobacteria (Synechococcus), fungi (Neurospora), higher plants ( [...] Read more.
The past twenty years have witnessed the most remarkable breakthroughs in our understanding of the molecular and cellular mechanisms that underpin circadian (approximately one day) time-keeping. Across model organisms in diverse taxa: cyanobacteria (Synechococcus), fungi (Neurospora), higher plants (Arabidopsis), insects (Drosophila) and mammals (mouse and humans), a common mechanistic motif of delayed negative feedback has emerged as the Deus ex machina for the cellular definition of ca. 24 h cycles. This review will consider, briefly, comparative circadian clock biology and will then focus on the mammalian circadian system, considering its molecular genetic basis, the properties of the suprachiasmatic nucleus (SCN) as the principal circadian clock in mammals and its role in synchronising a distributed peripheral circadian clock network. Finally, it will consider new directions in analysing the cell-autonomous and circuit-level SCN clockwork and will highlight the surprising discovery of a central role for SCN astrocytes as well as SCN neurons in controlling circadian behaviour. Full article
(This article belongs to the Special Issue Biological Clocks)
Show Figures

Figure 1

26 pages, 2808 KiB  
Review
Selectable Markers and Reporter Genes for Engineering the Chloroplast of Chlamydomonas reinhardtii
by Lola Esland, Marco Larrea-Alvarez and Saul Purton
Biology 2018, 7(4), 46; https://doi.org/10.3390/biology7040046 - 10 Oct 2018
Cited by 35 | Viewed by 14581
Abstract
Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular [...] Read more.
Chlamydomonas reinhardtii is a model alga of increasing interest as a cell factory for the production of valuable compounds, including therapeutic proteins and bioactive metabolites. Expression of foreign genes in the chloroplast is particularly advantageous as: (i) accumulation of product in this sub-cellular compartment minimises potential toxicity to the rest of the cell; (ii) genes can integrate at specific loci of the chloroplast genome (plastome) by homologous recombination; (iii) the high ploidy of the plastome and the high-level expression of chloroplast genes can be exploited to achieve levels of recombinant protein as high as 5% total cell protein; (iv) the lack of any gene silencing mechanisms in the chloroplast ensures stable expression of transgenes. However, the generation of C. reinhardtii chloroplast transformants requires efficient methods of selection, and ideally methods for subsequent marker removal. Additionally, the use of reporter genes is critical to achieving a comprehensive understanding of gene expression, thereby informing experimental design for recombinant applications. This review discusses currently available selection and reporter systems for chloroplast engineering in C. reinhardtii, as well as those used for chloroplast engineering in higher plants and other microalgae, and looks to the future in terms of possible new markers and reporters that will further advance the C. reinhardtii chloroplast as an expression platform. Full article
(This article belongs to the Special Issue Microalgal Biotechnology)
Show Figures

Figure 1

14 pages, 607 KiB  
Review
Applications of Microalgal Biotechnology for Disease Control in Aquaculture
by Patai Charoonnart, Saul Purton and Vanvimon Saksmerprome
Biology 2018, 7(2), 24; https://doi.org/10.3390/biology7020024 - 12 Apr 2018
Cited by 81 | Viewed by 13195
Abstract
Aquaculture industries, and in particular the farming of fish and crustaceans, are major contributors to the economy of many countries and an increasingly important component in global food supply. However, the severe impact of aquatic microbial diseases on production performance remains a challenge [...] Read more.
Aquaculture industries, and in particular the farming of fish and crustaceans, are major contributors to the economy of many countries and an increasingly important component in global food supply. However, the severe impact of aquatic microbial diseases on production performance remains a challenge to these industries. This article considers the potential applications of microalgal technology in the control of such diseases. At the simplest level, microalgae offer health-promoting benefits as a nutritional supplement in feed meal because of their digestibility and high content of proteins, lipids and essential nutrients. Furthermore, some microalgal species possess natural anti-microbial compounds or contain biomolecules that can serve as immunostimulants. In addition, emerging genetic engineering technologies in microalgae offer the possibility of producing ‘functional feed additives’ in which novel and specific bioactives, such as fish growth hormones, anti-bacterials, subunit vaccines, and virus-targeted interfering RNAs, are components of the algal supplement. The evaluation of such technologies for farm applications is an important step in the future development of sustainable aquaculture. Full article
(This article belongs to the Special Issue Microalgal Biotechnology)
Show Figures

Figure 1

2459 KiB  
Article
Age-Dependence and Aging-Dependence: Neuronal Loss and Lifespan in a C. elegans Model of Parkinson’s Disease
by Javier Apfeld and Walter Fontana
Biology 2018, 7(1), 1; https://doi.org/10.3390/biology7010001 - 23 Dec 2017
Cited by 11 | Viewed by 6281
Abstract
It is often assumed, but not established, that the major neurodegenerative diseases, such as Parkinson’s disease, are not just age-dependent (their incidence changes with time) but actually aging-dependent (their incidence is coupled to the process that determines lifespan). To determine a dependence on [...] Read more.
It is often assumed, but not established, that the major neurodegenerative diseases, such as Parkinson’s disease, are not just age-dependent (their incidence changes with time) but actually aging-dependent (their incidence is coupled to the process that determines lifespan). To determine a dependence on the aging process requires the joint probability distribution of disease onset and lifespan. For human Parkinson’s disease, such a joint distribution is not available, because the disease cuts lifespan short. To acquire a joint distribution, we resorted to an established C. elegans model of Parkinson’s disease in which the loss of dopaminergic neurons is not fatal. We find that lifespan is not correlated with the loss of individual neurons. Therefore, neuronal loss is age-dependent and aging-independent. We also find that a lifespan-extending intervention into insulin/IGF1 signaling accelerates the loss of specific dopaminergic neurons, while leaving death and neuronal loss times uncorrelated. This suggests that distinct and compartmentalized instances of the same genetically encoded insulin/IGF1 signaling machinery act independently to control neurodegeneration and lifespan in C. elegans. Although the human context might well be different, our study calls attention to the need to maintain a rigorous distinction between age-dependence and aging-dependence. Full article
(This article belongs to the Special Issue Systems Biology of Aging)
Show Figures

Figure 1

4196 KiB  
Review
Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles
by Charles L. Asbury
Biology 2017, 6(1), 15; https://doi.org/10.3390/biology6010015 - 17 Feb 2017
Cited by 48 | Viewed by 28032
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting [...] Read more.
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through ‘flux’, where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed. Full article
(This article belongs to the Special Issue Mechanisms of Mitotic Chromosome Segregation)
Show Figures

Figure 1

Back to TopTop