Oxidative Stress and Inflammation: From Mechanisms to Therapeutic Approaches 4.0

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 14938

Special Issue Editor

Special Issue Information

Dear Colleagues,

Oxidative stress and inflammation are two phenomena that are directly involved in practically all pathologies and especially in aging. However, they are not only involved in processes associated with damage. For instance, oxidative stress, which is associated with the redox state, constitutes an important mechanism in cell signaling and many physiological processes. Regarding inflammatory mediators, it is also known that they are essential in mechanisms such as the generation of gastric mucus for the protection of the stomach and the repair of tissues via the mobilization of stem cells. However, when these two phenomena are deregulated, their action is harmful. In this Special Issue, we ask ourselves several questions: How and when should we allow or block oxidative stress and inflammation? What is the advisable anti-inflammatory therapy associated with aging?

Prof. Dr. Juan Gambini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxidative stress
  • inflammation
  • molecular mechanisms
  • pharmacotherapy
  • longevity
  • aging

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 1044 KiB  
Article
Urinary Oxidative Stress Biomarkers in the Diagnosis of Detrusor Overactivity in Female Patients with Stress Urinary Incontinence
by Wei-Hsin Chen, Yuan-Hong Jiang and Hann-Chorng Kuo
Biomedicines 2023, 11(2), 357; https://doi.org/10.3390/biomedicines11020357 - 26 Jan 2023
Cited by 2 | Viewed by 1147
Abstract
Ninety-three women with urodynamic stress incontinence (USI) and a mean age of 60.8 ± 10.7 (36–83) years were retrospectively enrolled. According to their VUDS, 31 (33%) were grouped into USI and detrusor overactivity (DO), 28 (30.1%) were grouped into USI and hypersensitive bladder [...] Read more.
Ninety-three women with urodynamic stress incontinence (USI) and a mean age of 60.8 ± 10.7 (36–83) years were retrospectively enrolled. According to their VUDS, 31 (33%) were grouped into USI and detrusor overactivity (DO), 28 (30.1%) were grouped into USI and hypersensitive bladder (HSB), and 34 (36.6%) were controls (USI and stable bladder). The USI and DO group had significantly increased 8-isoprostane (mean, 33.3 vs. 10.8 pg/mL) and 8-hydroxy-2-deoxyguanosine (8-OHdG; mean, 28.9 vs. 17.4 ng/mL) and decreased interleukin (IL)-2 (mean, 0.433 vs. 0.638 pg/mL), vascular endothelial growth factor (mean, 5.51 vs. 8.99 pg/mL), and nerve growth factor (mean, 0.175 vs. 0.235 pg/mL) levels compared to controls. Oxidative stress biomarkers were moderately diagnostic of DO from controls, especially 8-isoprostane (area under the curve (AUC) > 0.7). Voided volume was highly diagnostic of DO from either controls or non-DO patients (AUC 0.750 and 0.915, respectively). The proposed prediction model with voided volume, 8-OHdG, and 8-isoprostane (cutoff values 384 mL, 35 ng/mL, and 37 pg/mL, respectively) had an accuracy of 81.7% (sensitivity, 67.7%; specificity, 88.7%; positive predictive value, 75.0%; negative predictive value, 84.6%). Combined with voided volume, urinary oxidative stress biomarkers have the potential to be used to identify urodynamic DO in patients with USI. Full article
Show Figures

Figure 1

Review

Jump to: Research

20 pages, 2932 KiB  
Review
Hydrogen Therapy and Its Future Prospects for Ameliorating COVID-19: Clinical Applications, Efficacy, and Modality
by Ishrat Perveen, Bakhtawar Bukhari, Mahwish Najeeb, Sumbal Nazir, Tallat Anwar Faridi, Muhammad Farooq, Qurat-ul-Ain Ahmad, Manal Abdel Haleem A. Abusalah, Thana’ Y. ALjaraedah, Wesal Yousef Alraei, Ali A. Rabaan, Kirnpal Kaur Banga Singh and Mai Abdel Haleem A. Abusalah
Biomedicines 2023, 11(7), 1892; https://doi.org/10.3390/biomedicines11071892 - 4 Jul 2023
Cited by 5 | Viewed by 6970
Abstract
Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and [...] Read more.
Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule. Full article
Show Figures

Figure 1

12 pages, 669 KiB  
Review
Glutathione Modulates Efficacious Changes in the Immune Response against Tuberculosis
by Arbi Abnousian, Joshua Vasquez, Kayvan Sasaninia, Melissa Kelley and Vishwanath Venketaraman
Biomedicines 2023, 11(5), 1340; https://doi.org/10.3390/biomedicines11051340 - 2 May 2023
Cited by 4 | Viewed by 2117
Abstract
Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part [...] Read more.
Glutathione (GSH) is an antioxidant in human cells that is utilized to prevent damage occurred by reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. Due to its immunological role in tuberculosis (TB), GSH is hypothesized to play an important part in the immune response against M. tb infection. In fact, one of the hallmark structures of TB is granuloma formation, which involves many types of immune cells. T cells, specifically, are a major component and are involved in the release of cytokines and activation of macrophages. GSH also serves an important function in macrophages, natural killer cells, and T cells in modulating their activation, their metabolism, proper cytokine release, proper redox activity, and free radical levels. For patients with increased susceptibility, such as those with HIV and type 2 diabetes, the demand for higher GSH levels is increased. GSH acts as an important immunomodulatory antioxidant by stabilizing redox activity, shifting of cytokine profile toward Th1 type response, and enhancing T lymphocytes. This review compiles reports showing the benefits of GSH in improving the immune responses against M. tb infection and the use of GSH as an adjunctive therapy for TB. Full article
Show Figures

Figure 1

32 pages, 1809 KiB  
Review
Oxidative Stress in the Anterior Ocular Diseases: Diagnostic and Treatment
by Azza Dammak, Cristina Pastrana, Alba Martin-Gil, Carlos Carpena-Torres, Assumpta Peral Cerda, Mirjam Simovart, Pilar Alarma, Fernando Huete-Toral and Gonzalo Carracedo
Biomedicines 2023, 11(2), 292; https://doi.org/10.3390/biomedicines11020292 - 20 Jan 2023
Cited by 11 | Viewed by 3869
Abstract
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, [...] Read more.
The eye is a metabolically active structure, constantly exposed to solar radiations making its structure vulnerable to the high burden of reactive oxygen species (ROS), presenting many molecular interactions. The biomolecular cascade modification is caused especially in diseases of the ocular surface, cornea, conjunctiva, uvea, and lens. In fact, the injury in the anterior segment of the eye takes its origin from the perturbation of the pro-oxidant/antioxidant balance and leads to increased oxidative damage, especially when the first line of antioxidant defence weakens with age. Furthermore, oxidative stress is related to mitochondrial dysfunction, DNA damage, lipid peroxidation, protein modification, apoptosis, and inflammation, which are involved in anterior ocular disease progression such as dry eye, keratoconus, uveitis, and cataract. The different pathologies are interconnected through various mechanisms such as inflammation, oxidative stress making the diagnostics more relevant in early stages. The end point of the molecular pathway is the release of different antioxidant biomarkers offering the potential of predictive diagnostics of the pathology. In this review, we have analysed the oxidative stress and inflammatory processes in the front of the eye to provide a better understanding of the pathomechanism, the importance of biomarkers for the diagnosis of eye diseases, and the recent treatment of anterior ocular diseases. Full article
Show Figures

Figure 1

Back to TopTop